
Hardware Speech Recognition in Low Cost, Low
Power Devices

Sukun Kim,Sergiu Nedevschi and Rabin K Patra
Computer Science Division(University of California, Berkeley)

CS252 Class Project, Spring 2003�
binetude,sergiu,rkpatra � @cs.berkeley.edu

Abstract— We investigate the problem of providing speech
recognition functionality, as an alternative to visual user-
interfaces, in hardware devices facing important power, cost
and storage constraints. Our goal is to enable these devices
to perform continuous real-time hardware speech recognition
for languages with small vocabularies, up to tens of words,
and having limited grammatical constructions. Real-time con-
tinuous speech recognition is a computationally-intensive, but
highly parallelizable task, with most of the computation taking
place in the decoding stage of speech recognition. To this
end, we propose a custom hardware implementation of the
decoder part of a HMM-based speech recognition system,
minimizing cost and power consumption while maintaining
a good recognition accuracy. We present our preliminary
findings, using a simulator to evaluate our design.

I. INTRODUCTION AND RELATED WORK

Designing low-cost,flexible and customizable user-
interfaces is a key component in providing an infrastructure
for information technology access for developing regions.
Such user-interfaces would be running on hand-held devices
that may have severe power, cost and size constraints.

As we cannot assume that the users of such a system
will be literate, spoken language input and output plays
a major part in the design of user-interfaces. However,
reliable recognition of large-vocabulary fluent speech is
still not state of the art, but providing cheap,reliable and
highly accurate speech recognition features for isolated
word or limited vocabulary systems should be achievable.
Providing inexpensive speech recognition will also alleviate
the need for costly LCD interfaces in these systems. Given
the constraints for obtaining expert support in developing
regions, our objective should be a system that can be
deployed with a base training(speaker-independent models)
with update and training facilities. The system should also
be flexible enough to handle different dialects and speech
model parameters with minimal effort to change dialects,
ideally requiring only a download of the new model. While
there are current speech recognition toolkits(HTK[1]) that
can provide good accuracy with limited vocabulary speech,
they are too heavyweight to be deployed on a low power
and low cost device. Implementing speech recognition on
a general purpose CPU is quite computation intensive.

However, it is known that significant power and cost

savings can be obtained if custom designs(ASIC) are made
for specific purposes. Especially with speech recognition,
a major part of the computation that is digital signal
processing can be implemented in custom hardware. What
we explore in this paper is the possibility doing the other
component of recognition that is decoding on the recog-
nition network also in hardware. While the problem of
implementing speech recognition on hardware has been
approached([2])and many commercial products([3] [4] [5]
[6]) are available nowadays, most of the solutions are
targeted specifically to a particular language (like English)
and are not designed to be extensible to handle different
dialect models or vocabularies of different sizes. The other
factors going against them are cost([5] needs a TI DSP
chip, [2] needs FPGAs) and therefore, they are not suitable
for low cost handheld devices. For a more detailed list of
hardware speech recognition solutions, look at [7].

Decoding for speech recognition basically involves solv-
ing a dynamic programming problem in time. In this
paper we show that recognition for a limited vocabu-
lary language(tens of words) can be parallelized using a
small number of very simple processing elements with
limited memory and clock speed requirements. The whole
recognition process consists of two steps - in the first
step, these processing elements are programmed with the
language grammar and the trained model parameters by a
general purpose CPU. The second step involves the actual
recognition performed by these processing elements using
coded speech vectors from a custom ASIC and requires no
supervision from the general purpose CPU. The architecture
proposed by us would also be able to handle different
speech encoding algorithms, and different language models.
Similar proposals for hardware accelerators aiding in speech
recognition has been proposed before([8]).

We use the HTK(Hidden Markov Toolkit)([9]) from
the Cambridge University Engineering Department for our
development and testing environment. For evaluating our
design, we perform a workload style analysis using coarse
simulation of the proposed hardware.

A. Motivation

The key motivations that were driving us:

� Low Power/Cost: As our solution was to be targeted
toward low cost handhelds, we had to choose a design
that would run at low clock speeds and voltages. This
meant that we could not do full-fledged recognition
on a general purpose CPU, but a limited vocabulary
based user-interface system was adequate. Also a key
power reduction technique is to reduce the voltage at
which a circuit runs by parallelizing the design([10]),
and therefore we wanted a design that would be easily
divided into parallel operations.� Flexibility: As we wanted our solution to work with
a range of language dialects and models, we wanted
a system that could easily download a new grammar
and pre-trained set of parameters.� Scalability: We did not want our system to be re-
stricted to a fixed sized vocabulary or a particular
speech coding algorithm, therefore a clean and scalable
design was needed that could handle more processing
elements without much parallelization overhead.

These issues are discussed in more detail in section III.

B. Overview

In section II , we present the mathematical theory behind
HMM based speech recognition and the structure of a
typical recognition system. Section III, presents the design
issues that guided us and in section IV , we discuss the
proposed architecture for our solution. Section VI deals with
the experimental evaluation and results.

II. SPEECH RECOGNITION BASICS

The chapter outlines the main components of a clas-
sic speech recognition system and their functioning. We
limit ourselves to presenting the notions necessary for
understanding the context of our work. For more in-depth
coverage of the subject, please see [11].

Figure 1 shows a HMM-based speech recognizer broken
down into three main stages. The spectral analysis stage,
also called the feature extraction stage, is responsible for
dividing the waveform inputs into frames (typically 25 mil-
liseconds in length), that are then transformed into spectral
feature vectors. These vectors convey information about
the energy of the speech signal for each of its component
frequencies. These vectors are then fed into a decoder, that
computes a set of most probable sequences of words given
the acoustic events observed. The decoder uses a recogni-
tion network on which it performs dynamic programming in
order to compute the sequences of words having the highest
probability. The recognition network is constructed using
a lexicon of phonemes, represented by Hidden Markov
Models (HMMs), a word dictionary represented again by
HMMs, and a �������	��
 grammar evaluating the probability
of a word considering the previous � word occurrences.
Finally, syntactic and semantic analysis is used to select
among the set of most probable sequences.

A. Spectral Analysis

This component of a speech recognition system that is
the signal-processing front-end of a recognizer is common
to almost all recognition systems. The basic aim of spectral
analysis is to represent the acoustic events in a speech signal
in terms of an efficient set of speech parameters. The two
most common choices for the signal-processing front-end
are a bank-of-filters and an LPC model.
� Bank-of-filters: In this model, the speech signal is

passed through a bank of Q bandpass filters whose
coverage spans the frequency range of the speech
signal(100Hz to 3000 Hz). The individual filters do not
overlap in frequency and the output of the � th bandpass
filter is centered around
�� . Since, the human ear has
non-linear response, the different bands might be of
varying widths.� Linear Predictive Coding(LPC): This model provides
a set of LPC parameters that specify the spectrum of
an all-pole model that best matches the spectrum of the
speech frame. The LPC model is preferred sometimes
as it provides a good representation of the human
voice signal, and it is more analytically tractable to
implement either in software or hardware.� Vector Quantization: Though the filter-bank and LPC
model based speech coding methods reduce the infor-
mation rate of the speech signal by a factor of around
10, in more constrained requirements, we may use just
a single spectral representation of the basic speech
unit. This is the idea behind Vector Quantization(VQ)
methods, where a codebook of unique speech vectors is
used to quantize and map a speech frame to an entry
of a precomputed codebook. This has the capability
to reduce the vector representation size even further
and also involves lesser computation later on in the
decoding stage as the probability calculation is reduced
to just a table lookup.

B. Decoding

The problem the decoder has to solve is the following:
given an observation sequence ����������������������� , where
each � � represents a feature vector, and a set of models

, each being a representation for a spoken utterance,
the decoder tries to find the model that best matches the
observation sequence, such that the probability !#"$�#% '&

is
maximized. This probability is not directly computable, but
can be estimated by using the Bayes theorem and computing
!#" % � & . The resulting recognized utterance is the one
represented by the model having the maximum probability
among all models.

The models are represented using Hidden Markov Mod-
els (HMMs). An N-state Markov Model is defined by a set
of (states forming a finite state machine, and an (*)+(
matrix whose elements � �-, define the transition probabilities
between states � and . .

SPECTRAL ANALYSER

DECODER

HMM phonem lexicon

n :

iy :

HMM word lexicon

need :

n iy d end

Love me baby

N-gram Grammar

Man 0.3 0.1

Car 0.4 0.2

is the

Fig. 1. Structure of a speech recognition system

In the Hidden Markov Model, each state is addition-
ally associated with a probability density function � , "$��� &
representing the probability that a particular observation
� is emitted by state . for observation number � . The
probability distribution can be continuous, in which case
the speech data is a multi-dimensional vector, or discrete,
corresponding to single quantized values of the data. � , "$� � &
is known as the observation probability. Both the transition
probabilities and the observation probability densities for
each of the states of an HMM modeling a spoken utterance
are estimated during a training process.

For the discrete case, the output probability for each state
is specified by a lookup table, describing the probabilities
for each of the possible discrete values. However, for the
continuous density case, the observation distributions are
represented by Gaussian Mixture Densities. The formula
for � , " ��� & is:

� , "$� � & � ���	� �

���
���� ��� , �	� (" � � ����� , �	� � � , �	� &����

� (1)

where
 � is the number of mixture components in

stream � , � , ��� is the weight of the
 ��� component and
(" � ��� �� &

is a multivariate Gaussian with mean vector �
and covariance matrix :

("$� ��� � � & � !" "$#&% & � % %('*)�+,.-0/)�1&2436587 + -0/)91&2 (2)

where n is the dimension of the observation vector O.
The computation of P(O %M) is described in the follow-

ing. Each sequence of observations � � ��� ��������� is emitted
by a state sequence of length � . Such a sequence is
described by a path in the state network. Given a state

sequence :'�<; � ; � � � � ; � , where the state at time � is ;6� , the
joint probability of the state sequence : and an observation
sequence � given a model

 � can be expressed as follows:

!#"$� ��: % '& �=� � "$� � & ��� � � �?>�@ 7 +
>�@ � >�@ "$��� & (3)

assuming that state 1 is the start state of the network.
The probability P(O %M) is the sum of the probabilities
corresponding to all the possible paths through the network
of states:

!#"$�#% '& � �A�BCB > !#"$� ��: % '&
(4)

In practice, the probability P(O %M) is approximated by the
probability of the state sequence maximizing P(O,Q %M).
This probability can be easily estimated using Viterbi
decoding.

For a given model M, let D , "�� & represent the maximum
likelihood of having observed the sequence � � and being
in state . at time � . This partial likelihood can be computed
efficiently using the following recursion:

D , "�� & �FEHGJI� � D � "4� � ! & � � , �K� , " � � & � (5)

given that

D � " ! & � ! � and D , " ! & � � � , � , "$��� & � (6)

for !ML . L (� being the total number of states of the
model. The maximum likelihood ! � "$�#% '&

is then given
by:

DON " � & �PEHGJI� � D�� " � & � �0N � � (7)

6

61 2 3 4 5

6

5

4

3

2

1
Speech
Frame
(Time)

State

4

5

1

2

3

Fig. 2. Viterbi Algorithm

Since the computation supposes repeated multiplications
with small values, it leads to underflow, and, in order to
prevent this, log probabilities are used instead. Hence, the
recursion from equation 5 becomes:

D , "4� & �FEHG&I� � D�� "4� � ! &�������� " � � , & � ������� "$� , "$��� & & � (8)

As illustrated in figure 2, the functioning of the algo-
rithm can be seen as the process of finding the best path
through a matrix, where the X-axis represent the speech
frame number (time), and the Y-axis represents the state
number. The cost of an edge represents the probability of
the corresponding transition, and the cost for each node
represents the observation probability at the corresponding
state in the given time moment. We can easily notice that
the problem can be solved using the dynamic probability
principle, since the partial probability corresponding to each
node must be computed only once.

The spoken utterances modeled by HMMs can be sub-
word constructions such as monophones and triphones,
or whole words. Moreover, words can be represented as
Markov chains or HMMs of phonemes.

These models representing words are then aggregated
using a language model. There are several possibilities in
modeling the language, depending on its complexity. One of
the most used models is the � -gram grammar [9], assigning
probabilities to words as a function of the previous �
words. However, for small and limited languages, simpler
models such as context-dependent grammars or even regular
grammars can be used.

III. DESIGN ISSUES FOR OUR SYSTEM

There are several features that differentiate our recogni-
tion system from the general case. Our hardware recognizer
is intended for use in the context of speech-triggered user
interfaces. This drastically limits both the number of words
supported in the vocabulary, as well as the complexity of
the grammar describing the language. The system will need
to support small languages of up to a few hundred words,

open

close

two

three

one

window

ow p ax n

Fig. 3. Network expansion

and small sets of possible syntactic constructions, usually
application-driving commands.

On the other hand, our system must be supported on a
hardware platform subject to imperative constraints in terms
of power consumption, storage capacity and fabrication
cost. Moreover, we must consider the additional constraint
of performing real-time recognition. All these limitations
recommend the approach of implementing the recognition
function on a custom-designed chip, and this can yield both
smaller power consumption and better performance. This is
especially true in the case of the decoder module, respon-
sible for the most costly part of the computation, because
the algorithms used to estimate the sequence probabilities
are inherently parallel, and consequently custom parallel
hardware can be used.

The above-mentioned considerations led us to make the
following adaptations to the general recognition mecha-
nism:

A. Word Model

As we know, the decoder uses HMMs to model indi-
vidual phonemes, as well as individual words. The most
efficient algorithm used to estimate the probabilities for
these models is the Viterbi algorithm, which relies on the
dynamic programming principle. This makes the probability
computation both efficient and parallelizable.

This is unfortunately not the case with computing proba-
bilities of sequences of words, if an � -gram language model
is used, because the same dynamic programming principle
does not apply in this case. Instead search algorithms such
as A* are used instead that adds a great deal of complexity
to the computation, and limits the parallelization opportu-
nities, making it expensive and impractical to implement
in hardware. On the other hand, the benefits of using an� -gram model for small languages with restricted grammar
are small.

Instead, we believe using regular grammars to constrain
the set of possible word sequences would be enough to
perform syntactic analysis in the decoding process. By
doing this, we provide sufficient context information to

eliminate ambiguities among different words having very
similar pronunciations. This solution, even though not vi-
able for every language, proves to be perfectly suited to
our case, where user-interface constructions can be easily
expressed using regular expressions.

B. Network Expansion

Having this language representation enables us to expand
the recognition information given by the phoneme and word
HMM models into a single recognition network, on which
dynamic programming techniques can be used to compute
the most probable path. An example of such a recognition
network is illustrated in figure 3.

C. Decoding Algorithm

The decoder uses a Viterbi-like algorithm, called the
token-passing algorithm [12], to compute the path through
the recognition network having the highest probability. The
classic Viterbi algorithm computes the probability of the
most probable path, without actually retaining the path.
While this approach is enough for the case of isolated
word recognition, where the sequence of sub-word states is
usually uninteresting, it is not enough for larger networks,
where we are interested in the sequence of words spanned
by the winning path.

The token-passing algorithm makes the concept of state
path explicit. Suppose each state � of an HMM at time �
holds a single movable token that, among other information,
contains the partial probability D � "4� & .The path extension
algorithm represented by equation 8 is replaced by the
following steps executed at each time frame � :

1) Pass a copy of the token in state � to all outgoing
connecting states . , incrementing the log probability
of the copy by ��� ��� � �-,�� (transition probability).

2) Examine the tokens in every state and discard all but
the one with the highest probability.

3) Increment the log probability of the token by
��� ��� � , "�� "�� & � � (observation probability).

Please note that the above-presented algorithm assumes
each state to be an emitting one.

In order for the algorithm to keep track of the history
of a token’s route, we need a set of history records, and
every token must carry a pointer to one of these records.
When a token is propagated from the exit state of a word
to the entry state of another, the transition represents a
potential word boundary. A new history record is created,
containing the value of the new word, and a reference to
the old history record the token was pointing to. Finally,
the token is modified to point to this newly created record.
Figure 4 shows details about how this algorithm works. At
the end of the recognition process, the token emerging from
the final state of the network will refer a history record, that
can be traced back to obtain the full sequence of words the
final token has passed through.

Old
History

“one”

“two"

“one”

“three

start

w uh n

t uw

th t iy

one

two

three

13
Decision: best
token received

from “two”

“ two” New
Record

Fig. 4. History for a recognition network looking at sequences of the
words ”one”, ”two”, ”three”. In the step shown here, the winning token
among word end nodes is token number 13, coming from the word ”two”.
A new history record is added, pointing to the previous record referenced
by 13. Token 13, entering in parallel each of the three possible words, will
point to the newly created record. This attests that token 13 has recognized
the sequence: start, ”three”, ”one”, ”two” so far. If 13 will be the overall
winning token at the end of the recognition process, this sequence will be
the beginning of the output sequence for the decoder(in reverse order)

IV. PROPOSED ARCHITECTURE FOR THE DECODER

Using the token passing algorithm, the probability com-
putation is distributed throughout the recognition network.
This means that each node in the network is responsible for
incrementing the probability of all the tokens it receives and
then for choosing token with the maximum partial probabil-
ity, while discarding the rest. The operations performed by
all the nodes in the model are very similar, and almost all
computations pertaining to one stage can be performed in
parallel. As one can easily notice, the computation is very
symmetric and inherently parallelizable, and a hardware
design taking advantage of these properties can be easily
imagined.

In order to establish a logical way of parallelizing the
computation, we must look closer at the topology of the
recognition network, and find out the similarities and dif-
ferences of the computation performed at each node. Let’s
illustrate our reasoning using a simple example. Suppose
our recognizer can receive as inputs any sequence of the
digits one, two and three. In this case, we can use the
recognition network shown in figure 5.

Unfortunately, as we can see, using this kind of network
comes with some drawbacks:

1) The in-degree of the states at the beginning of each
word is potentially unbound, depending on the gram-
mar, and

2) A lot of token comparisons are redundant, since the
all the outputs from the final word states are compared
against each other at each of the input states.

w uh n

t uw

th t iy

start end

Fig. 5. Simple network for three words

The complexity of the hardware components performing
the computation at the level of the network’s nodes, as well
as the data traffic between nodes, will greatly increase if the
in-degree of the states is unbound. In order to alleviate the
problem, we introduce dummy nodes that serve to aggregate
data, and also reduce the number of edges in the network.

Returning to our example, the decoder’s topology fea-
turing the above-mentioned dummy nodes is presented in
figure 6.

w uh n

t uw

th t iy

12start end

Fig. 6. Network of three nodes with dummy nodes

Now we can expand any regular grammar into a recogni-
tion network using Thompson’s construction. Having done
this expansion, the nodes of the network will have the
following properties:

1) The non-dummy nodes have a bounded in-degree,
determined by the topology of the HMMs used to
model phonemes and words. Usually, the in-degree
will be 2 for most states, rarely 3.

2) The dummy aggregating nodes have an unbound in-
degree, depending on the size and structure of the
grammar.

3) The non-dummy nodes are emitting i.e have non-
zero observation probabilities, while dummy nodes
are non-emitting.

A. Computation in the System

There are two kinds of computations, corresponding to
regular nodes and aggregator nodes. At each time step, each
node pulls its operands from the other nodes, and computes
its own token value.
� Regular nodes: An example is node (# in figure 7.

Using the token values at time � , node (# will
compute the token value for the � � ! time step, by
choosing the maximum between the values received
from (! and itself. That is to say,

N1

N0
N2

N6

a10

a20

a60

N1 N2 N3

a11 a22 a33

a12 a23

b1(O) b2(O) b3(O)

a) b)

Fig. 7. Types of nodes/computation

181716 j

151413 j1211

t uw

4 5 6 7 8 91 22 3

w uh n

10 j

silence

Fig. 8. Fully expanded network

D���"4� � ! & �
 ��� � D � "4� &�� � � � � � � "$� ��� � & ��D�� "�� &�� � ��� �� � "$����� � & �
Since the observation probability, � � "$����� � & � is the
same for both terms, only D � " � &�� � � � and D � " ��&�� � ���
need to be compared. Moreover, log probabilities can
be used. Consequently, ��� � "4D � "4� & & � ��� � " � � � & and
��� � "�D � "4� & & � ��� � " � ��� & are evaluated and compared, and
finally ��� � "$� � " ����� � & & is added.
The logarithm of the transition probabilities � � � and� ��� can be pre-computed, and used for each compu-
tation. The evaluation of the observation probability
is trickier, and depends on the type of feature vectors
used. In the case of discrete feature vectors, the log
probability estimation is no more than a table lookup.
However, in case of continuous feature vectors, the
estimation is more complicated, since the state output
probability distribution is specified by Gaussian Mix-
ture Densities.(Section II)� Aggregator nodes: An example is node (� in figure 7.
The dummies(or Aggregators) do not need to perform
any kind of multiplication, and do not need to estimate
any observation probabilities, since the nodes are non-
emitting. The computation for node (� will be:
log "�D�
 "�� � ! & & � EHG&I � ����� "4D ��"�� & & �

����� " � ��
 & ��������� ����� "4D�
�"4� & & ������� " �
�
 & �
B. Pruning

One of the most important techniques for reducing the
amount of computation and the recognition time is pruning.
A large network will have many nodes and one way to
make a significant reduction in the computation needed

is to only propagate tokens having some chance of being
the eventual winner. This process is called pruning, and
is implemented at each time step by keeping a record of
the best token overall and de-activating all tokens whose
log probabilities fall more than a beam-width below the
best. If the pruning beam-width is too small, the most likely
path might be pruned before its token reaches the end state
of the network. This results in a search error. Having a
large beam-width on the other hand means keeping a lot
of unpromising tokens. Thus, setting the beam-width is
a compromise between speed and avoiding search errors.
A different type of pruning can be done to bound the
total amount of computational resources used. However,
the system should be provisioned with enough resources
to maintain a reasonably low search error probability due
to pruning.

C. Alternatives to Consider

Considering the presented structure of the recognition
network, the most logical way to think about a hardware
implementation of the decoder would be to have dedicated
processing elements for each of the two types of nodes.
Several architectural alternatives can be considered:

1) Having a PE for each of the states in the network.
This solution implies having different numbers of
processing elements for each grammar. An approach
looking at implementing recognition networks having
one hardware processing element for each node, us-
ing FPGA technology, is described in [2]. However,
this solution suffers from the drawbacks inherent to
FPGAs: high cost, higher power consumption than a
custom ASIC. Moreover, the solution would require
reconfiguring the FPGA board every time a new
grammar and vocabulary is loaded in the recognizer.

2) Systolic arrays generally constitute a good match for
a wide range of dynamic programming problems.
Unfortunately, data aggregation, when the in-degree
is unbound (which is the case for our dummy nodes),
is difficult and inefficient to implement in such archi-
tectures.

3) Using a finite set of processing elements performing
regular-node computations, and a set of processing
elements performing aggregator-type computations.
This solution is preferable to the already considered
ones, and was chosen as a basis for our design.

D. Proposed Structure

We propose the following decoder structure (figure 9):
The main elements of the decoder are a set of processing
elements, each having its own local memory, a set of
aggregator units, a shared bus, the general-purpose CPU
of the device, and the global memory used by the CPU and
the aggregators.

General
Purpose

CPU

PE 2

PE N

PE 1

Aggregator NLocal Memory

CTRL

Execution Unit Aggregator 1

Memory

Fig. 9. Architecture of Decoder

Processing elements: A processing element consists of
an execution unit with local memory for storing the param-
eters about recognition network nodes along with a control
unit. The execution unit comprises of an arithmetic unit,
capable of performing fixed-point additions, subtractions
and multiplications. These kinds of operations are required
to support the regular node computations, as described in
section IV-A.

Each PE is assigned a set of nodes and for each node,
the PE has to read from memory the values of the tokens
it receives from other states, update the probability values
with transition and observation likelihoods and choose the
winning token storing it back to memory.

One way to do this is to store all the operands for all
the nodes stored in a single global memory module but this
would incur significant memory contention overheads, since
memory accesses account for a large part of the time spent
by each PE. We therefore provide each PE with its own
local memory, where the operands of the nodes assigned to
the PE will be stored. Since the output of one node is needed
by other nodes in the next time stage, we cluster nodes
into PEs such as to minimize inter-PE communication. The
allocation tries to ensure that all token exchanges between
regular nodes are within one PE. Only the exchanges from
regular nodes to aggregator nodes or the ones between
aggregator nodes need interaction between PEs and ag-
gregators. This completely eliminates the communication
between PEs since all inter-PE communication now passes
through aggregators. The advantage of the approach is
that PEs need only access their local memories for all
computations. We explain the way scheduling nodes to PEs
works in section IV-F.

The contents of the local memory are updated by the
general-purpose CPU of the device every time a new
language and subsequent recognition network is loaded. The
expansion of the recognition network, parameter training -
both transition and observation probabilities, and scheduling

of nodes to physical processing elements are all done
offline. The contents of each local memory are thus es-
tablished beforehand, and loaded exactly as received by the
networking interface or any other means of communication
of the device integrating our hardware recognizer.

Aggregators: Each aggregator unit performs the com-
putations for a set of dummy nodes assigned to it.

All aggregator units use the global memory of the device
to store their information. The aggregators have the role
of aggregating and exchanging data between processing
elements. Tokens are pulled from the local memories of the
corresponding PEs, compared to find the maximum, and the
resulting token is pushed back in the local memories of the
PEs that need the result. At each operation, the history, that
is kept in the global memory, is updated as well.

For an aggregator unit, the global memory should store
the following information for each of the dummy nodes
assigned to it:
� Inputs: The number of inputs and the pointers to

locations of input tokens that can be either in PE local
memory(in case of inputs from regular nodes), or in
global memory locations(in case of inputs from other
aggregators) along with log transition probabilities for
each of the inputs.� Outputs: The number of outputs and the pointers to
locations where the aggregator must copy the outputs
(one for each PE needing the winning token); the result
is also stored in the global memory, to be used by all
aggregators that need it as input.

Since no aggregator performs any observation probabil-
ity estimation, the only operations supported by aggregator
ALUs are integer and fixed-point additions and subtractions,
needed for updating the token value with the transition
probability, and computing memory addresses. However, a
special-purpose comparator, taking as inputs a number of
tokens, and having as a result the winning token, is prefer-
able. Since token comparison is one of the most frequent
operations for the aggregators, having a special-purpose
token comparator allows this operation to be performed in
a single cycle.

As the number of inputs is unbound, varying from
case to case, the aggregator must sequentially compare its
input tokens, and store the intermediary maximum token
in an accumulator. When establishing the number of inputs
simultaneously compared, a tradeoff must be made between
computation speed and bus-width for the token comparator.

Bus: All the elements of the system interact through a
single shared bus. The aggregators and CPU are bus mas-
ters, reading and writing memory locations. The memory
address space is shared between the global memory and
the local memories of the PEs. Synchronization among
aggregators and PEs to access the local memories and
among aggregators to access the global memories can be
implemented using bus arbitration.

CPU: The general purpose CPU of the device is respon-
sible for loading the initial contents of the local memories
and of the global memory portion reserved for speech
recognition. The contents correspond to a particular lan-
guage model and grammar combination and are computed
offline. The CPU is also responsible for feeding observa-
tions to the local memories of the processing elements, as
they are generated by the spectral analyzer.

E. Synchronization of PEs

For each input observation, each PE has to perform a
computation for all the nodes allocated to it. If the network
did not have any aggregator nodes, all these operations
could be performed in parallel, since each node uses results
from the previous iteration of other nodes (including itself).
However, the aggregators complicate the problem, since
their results for the current iteration are needed in the same
iteration by the nodes they deliver tokens to. For example,
in figure 7, aggregator (� must pull the tokens computed
by nodes (! , (# . . . (�� in the previous iteration, add the
corresponding transition probability to each of them, then
choose the winner and pass it to the nodes that need it in
the same iteration.

Our solution is to divide the node computations in each
PE into two phases - in the first phase the aggregators
as well as the nodes that have no inputs from aggre-
gators perform computations. Once the aggregators have
outputs ready,the remaining nodes that needed inputs from
aggregators perform their computations. The computation is
not completely parallelized, since in the second phase the
aggregators are idle, but this drawback has a limited effect,
especially due to the fact that nodes executed in phase 2
are a small part of all the nodes, and therefore the duration
of phase 2 is much smaller.

F. Scheduling Nodes to PEs

Since the recognizer has a fixed number of processing
elements, and a fixed number of aggregators, we have to
assign the logical nodes and aggregators from the recog-
nition network to the physical elements. This scheduling
process(done offline by the CPU) must take into account
the following constraints:
� If two regular nodes are exchanging tokens, they must

be assigned to the same PE.� The load of the PEs must be balanced, in order to
minimize execution time.� The number of PEs and number of aggregators must be
computed such that processing elements need not wait
for results from aggregators. After performing a num-
ber of experiments, described in detail in section VI,
we came to the conclusion that the computation time
at the aggregators is orders of magnitude smaller
than the computation for each processing element, and
therefore a single aggregator unit would be enough to
accommodate more than 25 PEs.

� All nodes representing a path between two aggregator
nodes must be assigned to the same PE as far as
possible. That usually means that states of a single
word are assigned to the same PE.

As an example, let’s consider the recognition network in
figure 10, recognizing any sequence of the words one and
two. The states of word one are assigned to PE1, while the
states of word two and another silence model are assigned
to PE2. If, in the initial recognition network, a path between
two aggregator nodes is too long to fit in a single processing
element, an additional aggregator node is added, splitting
the path (see figure 11).

Fig. 11. Splitting a long word

V. POWER AND PARALLELIZATION

One of our main motivations was to reduce the power
at which our speech recognition hardware can run. An
effective power reduction mechanism is voltage scaling [10]
where the supply voltage of a circuit is reduced in return
of higher latency. For CMOS circuits, the chief compo-
nent of power is dynamic and it can be expressed as
!������ � ���	�
����� ��
����
 ����� . The technique used to main-
tain throughput while reducing the voltage supply is to
utilize a parallel architecture. For example if we divide
the computation into � equal processing blocks, we can
reduce the clock frequency by a factor of � but the space
occupied by the circuit(capacitance) increases by a factor
of ! � ! � � , the ! � ! � factor coming from the overhead of
extra routing. However, the delay of the circuit is also
inversely dependent on the supply voltage obeying roughly:����� � ����� "�� ��� � � � & � where � ��� is the supply voltage
and � � is the threshold voltage. Thus, we can now de-
crease our supply voltage as we can afford a higher delay.
The new power expression is !�� A � ������� A ��� �� A �
 � A � �
� " ! � ! � � �	�
��� & "�������� � � � & � "
 ����� � � & where ��� is the reduc-
tion obtained from voltage scaling and it is clear !!� A � is
much smaller than !"����� . From our results, we can see that
the parallelization overhead in our design is very low and
the extra hardware required for exchanging data among
processing elements is small. The only situation where this
technique cannot be applied is when we have very heavy
constraints on area, but the simplicity of our design allows
us to use more silicon.

Unfortunately the gains from voltage reduction become
less attractive at very low supply voltages as the delay

increases at a much higher rate, but the operating ranges
of current circuits are still above this limit.

VI. EVALUATION

We evaluate our proposed hardware design, in order to
demonstrate the feasibility of speech recognition on power-
constrained devices, running at low frequencies. We start
by estimating the workload of the system, and the way
the workload is balanced among processors. We estimate
the number of execution cycles needed for decoding, we
compute the total number of operations performed (which
is proportional to the power consumption), and we evaluate
memory requirements. We continue by looking at the way
the system scales by increasing the number of processing
elements used, and measuring the communication overhead.
We also estimate the benefits of pruning.

A. Experimental Setup

We simulate the functioning of our decoder using a
workload-level event-based simulator. Since we only im-
plement the decoder, we integrate our simulator in the
HTK toolchain, providing the rest of the components of a
speech recognition system. We use continuous speech cod-
ing, providing much higher accuracy than discrete coding.
We evaluate our recognition accuracy for phoneme-based
recognition.

Our experiments use a speech database of over 6000
speech files, part of which are used for training, part
for recognition accuracy estimation. The database has a
vocabulary of 37 words, representing all the words required
to express any decimal number of arbitrary length. We
also implement a scheduling tool, used to allocate nodes
from the recognition network to physical processing units.
Parameter estimation, recognition network construction and
scheduling of nodes to processing elements are performed
offline, and the corresponding contents are loaded in the
memory of the decoder.

In order to perform the evaluations, we also make the
following reasonable assumptions:

- each processing element is equipped with a set of 15
32-bit registers, among which 12 are general and 3 are
special purpose. We derived these figures by analyzing the
code executed by the processing elements, and minimizing
the number of memory accesses as much as possible. The
number of registers can be smaller, if traded for some
additional memory accesses. The PE has an ALU capable
of performing multiplications, additions and subtractions.

- each aggregator unit has a set of 12 general purpose
and 10 special 32-bit registers. The ALU is capable of
performing additions, subtractions and shifts.

- the clock frequency of the device is in the range 1
- 20 MHz. This frequency range is typical for low-power
devices.

- we assume the following cycle counts for arithmetic
and memory operations:

j

t uw

silencesilence

w uh n

Nodes assigned to PE1 Nodes assigned to PE2

Fig. 10. Example node assignments

Operation: # cycles
addition 1
subtraction 1
multiplication 10
shift 1
mov 1
jump conditional 1
load/store from local memory 3
remote load/store 15
token comparator 5

The low latency for memory operations is achievable due
to the low clock frequency.

- we don’t consider any pipelining in executing the
operations in the processing elements and aggregators.

B. Workload Evaluation

The workload of the decoder is dependent on two main
factors: the size of the grammar and the size of the feature
vector. Both the execution time and the total system work-
load are proportional to the values of these two parameters.

In order to show the way workload varies with grammar
size, we evaluate three grammars: the first containing only
3 possible words, the second containing 18 words and the
third 34 words. For each of these grammars, we evaluate
the recognition of a 0.51 second speech utterance (having
51 observations), each observation being a feature vector of
size 12, running on our decoder with 10 processing elements
and one aggregator unit.

Figure 12 presents the number of cycles necessary to
perform recognition for each of the grammars. The com-
putation time varies almost linearly with the grammar size.
For the largest grammar, 1.04 million cycles are needed,
and in order to perform the computation in real-time (in
0.51 seconds, the length of the utterance), we need a clock
frequency of approximately 2MHz.

In figure 13, we evaluate the total number of operations
performed, in number of cycles, for the same three gram-
mars. As we can see, the total number of operations is an
order of magnitude larger than the execution time, due to
the 10 PEs executing in parallel.

Execution Time

0

200000

400000

600000

800000

1000000

1200000

Grammar1 Grammar2 Grammar3

C
yc

le
s

Execution Time

Fig. 12. Execution time for three different grammars

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

Grammar1 Grammar2 Grammar3

PE Execution Cycle

Aggregator Execution
Cycle

Fig. 13. Total amount of computation for three different grammars

Finally, we evaluate the memory requirements of the
decoding process, for the grammars described above (fig-
ure 14). The local memories of the processing elements
constitute the majority of the total memory requirements. As
we can see, the decoder necessitates hundreds of kilobytes
of memory, but this number varies with the length of the
utterance. However, since the utterances are limited in size,
we don’t expect more than an order of magnitude difference.

The total amount of computation and execution size are
also proportional to the size of the feature vectors (figure

0

20000

40000

60000

80000

100000

120000

140000

Grammar1 Grammar2 Grammar3

B
yt

es PE Memory Size

Aggregator
Memory Size

Fig. 14. Memory requirements for three different grammars

15).

0

1e+007

2e+007

3e+007

4e+007

5e+007

6e+007

0 5 10 15 20

N
um

be
r

of
 C

yc
le

s

Number of PEs

Execution Time

Vector Size 0
Vector Size 6

Vector Size 12
Vector Size 18
Vector Size 24

Fig. 15. Execution time for different feature vector sizes, as a function
of number of processing elements.

The amount of computation independent of the feature
vector size is shown in the plot for a feature vector of size
0. The part of the computation above this line increases
linearly with the size of the feature vector(the curves are
equally spaced), and represents the amount of computation
due to observation probability estimation. As we can see,
for large observation sizes, estimating the output probability
accounts for most of the computation and execution time
spent.

This computation can be reduced if discrete observations
are used instead, in which case observation probability
estimation reduces to a table lookup, but in this case
significant accuracy would be sacrificed.

C. Scalability

In order to illustrate the scalability properties of our
design, let’s look at figure 16:

The total amount of computation increases very lightly
with the number of processing elements used. This is due to
the inherently parallelizable nature of the computation. The
small increase is due to the increase in communication over-
head, and this remains insignificant even for large number of

0

5e+006

1e+007

1.5e+007

2e+007

2.5e+007

3e+007

3.5e+007

4e+007

0 5 10 15 20

N
um

be
r

of
 C

yc
le

s

Number of PEs

Workload

Execution Duration (Number of Cycles)
Total Computation (Number of Cycles)

Average Computation per PE (Number of Cycles)

Fig. 16. Scalability of execution time and workload

processing elements. Since the total amount of computation
remains roughly constant, the average computation per
processing element indicates the ideal way the execution
time should scale. Unfortunately, as the number of PEs
increases, our algorithm for scheduling nodes to processing
elements does a poor job in balancing the workload, and
consequently the execution time is larger than ideal.

Memory size per processing element scales down in a
similar manner to the execution time (figure 17). The total
memory size increases very slowly with the number of PEs.
As we can see, local memory requirements are several times
larger than global memory requirements, including history,
that is also stored in the global memory.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16 18 20

B
yt

es

Number of PEs

Memory Size

Aggregate Memory Size
Average Memory Size per PE
Maximum Memory Size of PE

Total Local Memory Size

Fig. 17. Scalability of memory requirements.

The speedup efficiency is affected by the poor balancing,
but nevertheless it stays around 50% even for 20 processors.

D. Balancing Number of Aggregators and PEs

After running a few experiments, we quickly realized
that aggregators are idle most of the time, and one aggre-
gator can serve alone any reasonable number of processing

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

S
pe

ed
up

/N
um

be
r

of
 P

E
s

Number of PEs

Speedup efficiency

Fig. 18. Speedup efficiency.

elements. We consequently use a single aggregator unit. The
following diagram shows that, even for a large number of
processors, the aggregator remains idle for more than 50%
of the time.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

R
at

io
 o

f B
us

y
T

im
e

Number of PEs

Average Busy Ratio of Aggregator

Fig. 19. Ration of busy time to total time for the aggregator.

In fact, the aggregator constitutes a bottleneck for the
system only in the initial iterations, when the first token
from the start state of the recognition network begins to
propagate. In these iterations, the processing elements are
mostly idle. However, as soon as more tokens are generated
and flow through the network, the aggregator becomes less
busy, and the PEs become the bottleneck (see figure 20).

When pruning is applied though, for some iterations it
might happen that the computation for the PEs is drastically
reduced, while the aggregator’s job remains roughly the
same, causing the PEs that already finished the execution of
phase 1 to wait for aggregator’s results before proceeding
to phase 2.

E. Pruning

Pruning is used to reduce the execution time and the total
computation, thus reducing the overall power consumption.

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120 140 160 180

C
yc

le
s

Iteration Number

Cycles for aggregator (w/o pruning)
Max cycles for a PE in phase 1 (w/o pruning)

Cycles spent by aggregator (with pruning)
Max cycles for a PE in phase 1 (with pruning)

Fig. 20. Number of operations performed in each iteration by aggregators
and processing elements in phase1. This shows when the aggregator
becomes bottleneck.

0

0.5

1

1.5

2

2.5

0 50 100 150 200

R
ed

uc
tio

n
R

at
io

Beam Width

Execution Time Reduction
Total computation Reduction

Fig. 21. Execution time and computation reduction using pruning.

As we can see from figure 21, the overall computation can
be reduced by a factor of 2.5, if a small beam-width is used.
The execution time can also be reduced, but not by the same
amount, because tokens with high probabilities tend to be
localized, and a single PE having a lot of highly probable
tokens is enough to make the given iteration slow, because
none of those tokens can be pruned.

F. Accuracy and Speech coding

Another aim of our study was to determine the optimal
speech coding technique that could give us reasonable
accuracy while still keeping the computation within bounds.
Figure 22 shows best accuracies achievable with different
coding schemes with varying feature vector sizes. All the
coding schemes are based on the MFCC(Mel Frequency
Cepstral Coefficients) with feature sizes from 12 to 39. The
key point to observe is that the accuracy does not always
depend on the feature vector size - but on the particular data
set and training method. We further aim to analyze different

coding mechanisms for accuracy as well as complexity in
implementation.

Accuracy

0

10

20

30

40

50

60

70

80

90

MFCC(12) MFCC_0_D(26) MFCC_E_D(26) MFCC_0_D_A(39)

Word Accuracy Sentence Accuracy

Fig. 22. Sentence and Word Accuracy(%) for different coding techniques

VII. CONCLUSION

We consider the problem of providing speech recognition
functionality in devices facing power, storage and cost con-
straints. By analyzing different design choices, we conclude
that a parallel custom hardware design that performs both
signal processing and decoding in hardware is the best
solution. Parallelization of computation makes recognition
feasible for a large class of power-constrained devices, by
enabling real-time decoding at low frequencies and at low
voltages, thus decreasing overall power consumption.

The most important contribution of this study is to
demonstrate that the decoding process of speech recognition
can be easily parallelized using an array of extremely
simple processing elements. We show that the space and
communication overhead of parallelization is negligible in
our proposed design as we exploit data locality by using
local memories and decrease the length of the data path
by having short buses. We show that our design is scalable
and the inherent simplicity of the hardware structure implies
small design and development cost, as well as small man-
ufacturing cost. The structure also allows further workload
reduction optimizations, such as pruning, that alone reduce
the computation by a factor of 2.5. The design is flexible
enough to allow the download of HMM models for different
languages, different grammars and coding algorithms.

We show that, for grammars of tens of words and
observation vectors of tens of values, we can perform real-
time recognition at frequencies less than 10 MHz, and
requiring less than one megabyte of storage while still
maintaining reasonable accuracy.

In the future, to get better estimates of the space/power
requirements of our architecture and to verify our claims
about the power/cost gains, we plan to implement it in
silicon.

REFERENCES

[1] S. Young, “The HTK Hidden Markov Model Toolkit: Design and
Philosophy,” 1993.

[2] S J Melnikoff, S F Quigley and M J Russell, “Implementing a Simple
Continuous Speech Recognition System on an FPGA,” 2002.

[3] Sensory Technologies, “Sensory Speech Products,”
http://www.sensoryinc.com/.

[4] Conversay Speech Technology Solutions, “Conversay Advanced
Symbolic Speech Interface (CASSI).”

[5] Lim Hong Swee,Texas Instruments, “Implementing Speech Recog-
nition on TMS320C2xx.”

[6] Lorenzo Cali, Francesco Lertora, Monica Besana And Michele
Borgatti, “CO-Design Method Enables Speech Recognition SoC,”
2001.

[7] “List of Speech Recognition Hardware Products,”
http://www.speech.cs.cmu.edu/comp.speech/Section6/Q6.5.html,
2002.

[8] T. S. Anantharaman and R. Bisiani, “A hardware accelerator for
speech recognition algorithms,” ACM SIGARCH Computer Archi-
tecture News, vol. 14, no. 2, pp. 216–223, 1986.

[9] Speech Vision and Robotics Group,Cambridge University Engineer-
ing Department , “HTK Tool Kit,” http://htk.eng.cam.ac.uk/.

[10] A. Chandrakasan and S. Sheng and R. Brodersen, “Low-Power
CMOS Digital Design,” 1992.

[11] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Prentice-Hall, 1993.

[12] Young. SJ and R. NH and T. JHS, “Token Passing: A Simple
Conceptual Model for Connected Speech Recognition Systems,”
1989.

