
Structural Health Monitoring
Using Wireless Sensor Networks

Sukun Kim
492 Soda Hall

University of California at
Berkeley

Berkeley, CA 94720

binetude@cs.berkeley.edu

David Culler
627 Soda Hall

University of California at
Berkeley

Berkeley, CA 94720

culler@cs.berkeley.edu

James Demmel
737 Soda Hall

University of California at
Berkeley

Berkeley, CA 94720

demmel@cs.berkeley.edu

ABSTRACT
Structure monitoring brings new challenges to wireless sen-
sor network: high-fidelity sampling, collecting large volume
of data, and sophisticated signal processing. New accelerom-
eter board measures tens of G acceleration. High frequency
sampling is enabled by new component of David Gay. With
new component, up to 6.67KHz sampling is possible with
jitter less than 10s. Large-scale Reliable Transfer (LRX)
component collects data at the expense of 15% penalty of
channel utilization for no data loss. To overcome low signal-
to-noise ratio, analog low-pass filter is used, and multiple
digital data are averaged. Structure monitoring is a driving
force for extending capability of wireless sensor networks
system.

Keywords
wireless sensor networks, structure monitoring

1. INTRODUCTION
Wireless sensor network enables low-cost sensing of envi-
ronment. Many applications using wireless sensor networks
have low duty cycle and low power consumption. However
the ability of wireless sensor networks can be extended in re-
verse way. Enhanced TinyOS, and new components opened
possibility for more aggressive applications. Structure mon-
itoring is one example of such applications. To monitor a
structure (e.g. bridge, building), we measure behavior (e.g.
vibration, displacement) of structure, and analyze health
of the structure based on measured data. Figure 1 shows
overall system. Each component can have multiple subcom-
ponents. In our case, sensor is accelerometer which will be
discussed in Section 2, and analog processing has low-pass
filter (Section 6.) Digital processing includes averaging (Sec-
tion 6), data collection (Section 5), and system identification
(Section 6). Low-jitter control contains high-frequency sam-
pling (Section 4). There are more sub-components to be

Analog
ProcessingSensor Digital

Processing
Analog to Digital
Converter (ADC)

FeedbackLow-Jitter
Control

Analog
ProcessingSensor Digital

Processing
Analog to Digital
Converter (ADC)

FeedbackLow-Jitter
Control

Figure 1: Overall System

added in the future: time synchronization in low-jitter con-
trol, calibration and digital filtering in digital processing.

Here we present challenges, findings, and our experience in
structure monitoring using wireless sensor networks. Rather
than focusing on one single component, this paper overview
overall system and issues in each component.

2. RELATED WORK
Habitat monitoring is a leading application of wireless sen-
sor network. And it is an example application with low duty
cycle. ZebraNet[6] uses PDA-level device with 802.11b wire-
less network. Great Duck Island[8] uses Berkeley mote, and
watch ducks without disturbing them at low cost. For struc-
ture monitoring, there are tremendous amount of research
using conventional wired way. GPS was used combined with
wired data collection[10, 3], however at a high cost. There
is an approach using wireless network for data collection[2],
which has great advantage over wired network. However,
it uses large hardware platform (in terms of size, power,
and cost) which diminishes benefit of wireless approach. [7]
uses low-cost device and wireless network, but it is more like
conceptual test, and fidelity is not sufficient for real deploy-
ment. We begins with high fidelity sampling in the following
section.

3. DATA ACQUISITION
Data acquisition is composed of mainly two parts: data sam-
pling, and data collection. Structure monitoring requires
high fidelity data sampling. Accurate, high frequency sam-
pling, and low jitter are main requirement for high quality
sample. Accuracy is discussed in this section, and high fre-
quency sampling with low jitter will be covered in Section 4.
And data collection will be discussed in Section 5. In struc-
ture monitoring, acceleration signal is very week. Detecting
even moderate earthquake requires to measure 500G accel-
eration. Sensitivity and accuracy of accelerometer is cru-

Figure 2: Accelerometer Board

Table 1: Two Accelerometers Combined with Sys-
tem

ADXL 202E Silicon Designs 1221L
Type MEMS MEMS

Number of axis 2 1
Range -2G to 2G -0.1G to 0.1G

System noise floor 200(G/
√

Hz) 30(G/
√

Hz)
Price $10 $150

cial, so we put significant portion of effort to accelerometer
board. New accelerometer board was designed by as shown
in Figure 2.

3.1 Accelerometers
It has two kinds of accelerometers: ADXL 202E, Silicon
Designs 1221L. Table 1 shows characteristics of each ac-
celerometer combined with entire system. Accelerometer
board contains 1 of ADXL 202E, and 2 of Silicon Designs
1221L, and 4 16bit analog to digital converter (ADC). There
are two channels for ADXL 202E, and two channels for Sil-
icon Designs 1221L with same orientation. One is parallel
to gravity, and the other is vertical to gravity. Initially both
accelerometers had range of -2G 2G, but for better sen-
sitivity, range of Silicon Designs 1221L is change to -0.1G
0.1G. Channel with axis parallel to gravity has 1G offset
to compensate for offset by gravity. It also contains one
temperature sensor (reason will be explained later). New
version of Berkeley mote, named as Mica2 [1], is used for
control and communication.

3.2 Noise Floor Test and Shaking Table Test
To see static characteristic of accelerometers, accelerome-
ter board was put to quiet place (from vibration and sound)
with constant temperature. This test shows noise floor which
is shown in Table 1. For Silicon Designs 1221L, range was
-0.1G 0.3G. Then to see dynamic behavior of accelerome-
ters, we performed shaking table test with constant temper-
ature. Even though test site was not completely free from
vibration and sound noise, it was quiet enough for a dynamic
range of shaking table to dominate noise. Results are shown
in Figure 3. Left figure is result of ADXL 202E, right one
is result of Silicon Designs 1221L, and driving frequency is
0.5Hz. Data are read from both channels at the same time.
For this test, channel for Silicon Designs 1221L had range
of -2G 2G.

We can see Silicon Designs 1221L shows cleaner shape in

0 2 4 6 8 10 12 14 16 18

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Low resolution Sensor, Test1, 0.5Hz

Time (sec)

A
cc

el
er

at
io

n
(g

)

0 2 4 6 8 10 12 14 16 18

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

High resolution Sensor, Test1, 0.5Hz

Time (sec)

A
cc

el
er

at
io

n
(g

)

Figure 3: Shake Table Test (0.5Hz)

both static situation and dynamic situation. Figure 4 show
another experiment on shaking table. Here frequency in-
creases while displacement remains constant. When move-
ment gets rigorous, Silicon Designs 1221L does not properly
read it. It seems like Silicon Designs 1221L has larger damp-
ing factor than ADXL 202E.

3.3 Tilting Test and Vault Test
To measure linearity of accelerometer value, we performed
tilting test with help of Bob Uhrhammer. By changing tilt-
ing degree of accelerometer, we can obtain line showing ac-
celeration value read versus real acceleration. Only channel
vertical to gravity is measured of Silicon Designs 1221L. For
this test, range was -0.1G 0.3G. Deviation from minimum
mean square error line is within 60G For a better noise floor
test, we went to a vault in Lawrence Berkeley Laboratory.
Figure 5 shows how quiet inside of vault is compared to nor-
mal office environment. And it also shows reference reading
from very sophisticated accelerometer in the vault, which is
used for seismic research. System with Silicon Designs 1221L
shows 20dB higher noise level. Figure 6 shows time plot of

0 2 4 6 8 10 12 14 16 18

-1

-0.5

0

0.5

1

Low resolution Sensor, Test4, Increasing frequency

Time (sec)

A
cc

el
er

at
io

n
(g

)

0 2 4 6 8 10 12 14 16 18

-1

-0.5

0

0.5

1

High resolution Sensor, Test4, Increasing frequency

Time (sec)

A
cc

el
er

at
io

n
(g

)

Figure 4: Shaking Table Test (Increasing frequency
with same displacement)

Figure 5: Noise Power Spectral Density

acceleration in vault and office environment for 30 minute
period. Red line shows noise in normal office environment.
We can see noise from machines, which is also visible in
Figure 5. Blue line shows acceleration readings from vault.
Drift is observed in this case. On test day, it was cold, and
inside of vault was hot by lights. We put accelerometer in
a vault, and immediately started sampling. So accelerome-
ter board was under drastic change in temperature. Drift is
almost 10mG which is significant compared to noise floor,
and sensitivity. More discussion on temperature will follow
in Section 8 Future work.

4. HIGH-FREQUENCY SAMPLING

0 2 4 6 8 10 12

x 10
5

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
Time plot, Test 1 (McCone Hall) vs. Test 2 (Vault), Quiet Environment

Sample Number

A
cc

el
er

at
io

n
(g

)

Figure 6: Time Plot of Acceleration

Node 1

Node 2

Node 3

Spatial jitter

Temporal jitter

Node 1

Node 2

Node 3

Spatial jitter

Temporal jitter

Figure 7: Sources of Jitter

Characteristic vibration frequency of a structure is usually
around 10Hz rage. However by Nyquist theorem, sampling
rate should be at least twice of that. Moreover, to reduce
effect of noise averaging is used, and sampling rate is multi-
plied by the number of samples averaged. All these factors
increase sampling rate to KHz level. Structure monitoring
requires regular sampling with uniform interval, and jitter
becomes harder problem as sampling rate gets higher. There
are two kinds of sources to jitter, and they are shown in Fig-
ure 7. Temporal jitter occurs inside of node, because actual
sampling does not occur at uniform interval. So even with
only one node, temporal jitter happens. Spatial jitter hap-
pens because of variation in hardware, and imperfect time
synchronization. Even if two nodes agree to sample at time
T, this T occurs at different absolute times for those two
nodes. Spatial jitter occurs only when there are more than
one node. Here only temporal jitter is considered. Spatial
jitter will be discussed in Section 8 Future Work. David Gay
wrote a new component HighFrequencySampling, which en-
ables KHz range sampling. This new component is intro-
duced in Section 4.1, jitter test result is shown in Section
4.2, and theoretical jitter analysis follows in Section 4.3.

4.1 HighFrequencySampling component
This component is written by David Gay for sampling at
KHz level frequency. Pre-existing components can sample
only up to 200Hz. There are two major sub-components
which enable high frequency sampling. MicroTimer is a new
timer component which directly accesses hardware timer,
and does not provide multiple abstract timers. This is very
simple and quick to process timer events. BufferLog is a
flash memory writer. It has two buffers. One is filled up
by upper layer application while the other buffer is written
to flash memory as a background task. Those two compo-
nents (MicroTimer, BufferLog) have minimum amount and
length of atomic section, which blocks other operation and
could introduce queue overflow. With HighFrequencySam-
pling component, 6.67KHz sampling is achieved. With av-
eraging 16 samples, 1KHz is achieved, which means 16KHz
of sampling.

4.2 Jitter Test
We tested jitter of HighFrequencySampling component. In-
stead of storing acceleration value, time is recorded so that
we can measure jitter. Figure 8 shows jitter as time goes.
There are two sections: plain section, spiky section, even
though at 6.67KHz this separation is not clear. These two
sections constitute one epoch. It takes epoch period of time
to fill up buffer. During spiky period, buffer is written to

450 460 470 480 490 500 510 520 530 540 550
-1

0

1

2

3

4

5

6

7

8

9

10
Interval: 1000ms

Sample

Ji
tte

r
(u

s)

450 460 470 480 490 500 510 520 530 540 550
-1

0

1

2

3

4

5

6

7

8

9

10
Interval: 200ms

Sample

Ji
tte

r
(u

s)

flash memory as a background task. At 1KHz, only small
portion of sampling is affected by flash memory write. At
6.67KHz, flash memory write takes too much portion of time
to fill up buffer, most of sampling are affected by flash mem-
ory write. Looking at 5KHz case, even at 6.67KHz flash
memory write should not affect that many sampling. How-
ever, overhead of sampling itself seems to have some effect.
There is another thing interesting. At plain section, there is
a constant delay for every sampling. This delay is wake up
time of CPU. When CPU is idle, it enters a sleeping mode.
And it takes 4 cycles to recover. Since there is a function
call to record time, actually it takes 5 cycles here. Since
CPU runs at 8MHz, this wakeup time is equal to 625ns.

Figure 9 shows distribution of jitter values (histogram). We
can see a peak at 625ns, which is wakeup time. Except this
peak, frequency of jitter is largest near 0s, and gradually
decreases as jitter value increases. And jitter values are
within 10s. Next section analyzes this phenomenon.

450 460 470 480 490 500 510 520 530 540 550
-1

0

1

2

3

4

5

6

7

8

9

10
Interval: 150ms

Sample

Ji
tte

r
(u

s)

Figure 8: Jitter in Time Line (1KHz, 5KHz,
6.67KHz respectively)

-1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 1000ms

Jitter (us)

S
am

pl
e

-1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 200ms

Jitter (us)

S
am

pl
e

-1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 150ms

Jitter (us)

S
am

pl
e

Figure 9: Histogram of Jitter (1KHz, 5KHz,
6.67KHz respectively)

Sampling

Other job

Non-preemptible portion (atomic section) Preemptible task portion

Sampling

Other job

Non-preemptible portion (atomic section) Preemptible task portion

Figure 10: Occurrence of Jitter

Jitter

Sample

C C+T(k1) C+T(k2) . . .

F(k2)

F(k3)

Jitter

Sample

C C+T(k1) C+T(k2) . . .

F(k2)

F(k3)

Figure 11: Jitter Model

4.3 Jitter Analysis
Figure 10 shows interaction of sampling and other job (flash
memory write). Timer event for sampling occurs regularly
with uniform interval. However to be serviced in CPU, CPU
should finish non-preemptible portion (in TinyOS, atomic
section). Then CPU handles events in event queue which
came before timer event. Then finally timer event for sam-
pling is handled. For our case, event queue is not likely filled
with other waiting events, so this possibility is not consid-
ered here. Then the length of atomic section in execution de-
termines jitter. Let T(i) be execution time of atomic section
i, and let X(i) be a random variable uniformly distributed
in [0, T(i)]. And let C be context switch time. Assume
that the probability of timer event occurring at any point
in atomic section i is same, then jitter will follow C+X(i).
Figure 11 shows this jitter model, where F(i) is frequency
of occurrence of atomic section i. Since jitter distribution of
every atomic section begins from C, the frequency is high-
est near C and decreases as moving farther. And frequency
drop at C+T(i) by F(i), since atomic section i will not have
any distribution beyond C+T(i). Actually there is a peak at
C, because when program is in preemptible section, it will
immediately service timer event after context switch time
C.

Test result matches quite well with theoretical model here.
And we can also notice that context switch time C is 0, which
means timer event is handled immediately if program is not
in atomic section. There is one bad news. Worst case jitter
is determined by the longest atomic section of the entire
system. So even if we have good component at low layer, if
upper application layer is not well written, system will suffer
long worst case jitter.

High frequency sampling with high accuracy produces a
large amount of data. This large amount of data can not be
collected at real time through wireless communication. So
we store data to flash first. And after sampling enough data,

collection starts, and data in flash memory are transferred.
Transferring large amount of data is another challenge. Next
Section explains how we transfer huge volume of data effi-
ciently.

5. LARGE-SCALE RELIABLE DATA TRANS-
FER

As we sample at high frequency with large number of nodes,
the amount of data gets large quickly. Let us assume each
node store 4Byte of data and 4Byte of time stamp at 100Hz.
And assume there are 100 nodes, radio throughput is 1.2KB/s,
and data is collected to one base station. If acceleration
data worthy 5 minutes is collected, each node will trans-
fer 240,000Bytes. 100 nodes will transfer 24,000,000Bytes.
Since the end link to base station is a bottleneck, it will
take more than 5 hours. We can see bandwidth is narrow
compared to aggressive data sampling. Even if we allevi-
ate this problem using multi-channel or multi-tier network,
still we will be in short of bandwidth. Moreover, we need
to transfer data reliably. We will be able to overcome some
packet losses using data processing, but at current stage we
do not assume this technique. These needs lead to efficient
large-scale reliable data transfer. Right now RAM to RAM
transfer is implemented as a building block. Multi-hop flash
memory to flash memory transfer will be discussed in Sec-
tion 8 Future Work.

5.1 Protocol
Large-scale Reliable Transfer (LRX) component assumes that
data resides in RAM. Upper layer should handle non-volatile
storage. LRX transfers one data cluster, which is composed
of several blocks. One block fits into one packet, so the num-
ber of blocks is equal to window size. Each data cluster has a
data description. After looking at data description, receiver
may deny data (receiver already has that data, or that data
is not useful anymore). Explicit open handshake is used.
Data description and size of cluster is sent as a transfer re-
quest. If receiver has enough RAM, and application layer
agrees on data description, then receiver sends acknowledge-
ment for transfer request. Once connection is established,
actual data is transferred. Protocol at high level can be
summarized as selective acknowledgement and retransmis-
sion. Data transfer is composed of multiple rounds. In each
round, sender sends packets missing in the previous round.
At the end of each round, receiver sends acknowledgement
saying which packets are missing. Then sender, after look-
ing at this acknowledgement, sends packet missing again.
The first round can be thought of as a special case where
every packet was missing in the previous (imaginary) round.
Tear-down is implicit. Successful tear-down cannot be guar-
anteed anyway, however close phase will introduce overhead,
and delay. We favored quick movement to next connection,
and eliminated close phase.

Any packet can be lost during transfer, so there is timeout
for every wait to prevent indefinite waiting. Figure 12 shows
case with no packet loss. When Open packet is lost as in
Figure 13, Open is retransmitted after timeout. When Ack
for Open is lost as in Figure 13Figure 14, Open is retrans-
mitted also after timeout. Figure 15 shows what happens
if Data packet is lost. After looking at acknowledgement,
sender resends lost data. Figure 16 shows when Ack for

Sender Receiver

Open

Ack for
Open

Ack for
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

DONE

Sender Receiver

Open

Ack for
Open

Ack for
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

DONE

Figure 12: No Lost Packet

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ackfor
Open

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ackfor
Open

Figure 13: Open is lost

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ack for
Open

Ack for
Open

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ack for
Open

Ack for
Open

Figure 14: Ack for Open is lost

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 2

Ack for
Data

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 2

Ack for
Data

Figure 15: Data Block 2 is lost

Sender Receiver

Ackfor
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 4

Ackfor
Data

Sender Receiver

Ackfor
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 4

Ackfor
Data

Figure 16: Ack for Data is lost

Sender Receiver
Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

Data
Block 4

Ack for
Data DONE

Sender Receiver
Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

DONE

Data
Block 4

Ack for
Data DONE

Figure 17: Data Block 4 is lost (no timeout to send
ack)

Sender Receiver

Ackfor
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

Data
Block 2

Ackfor
Data

Data
Block 3

Sender Receiver

Ackfor
Data

Data
Block 1

Data
Block 2

Data
Block 3
Data
Block 4

Data
Block 2

Ackfor
Data

Data
Block 3

Figure 18: After Ack, when the first Data is lost

IDLE

S_O

S_D

S_A

Timer.fired

More try

Timout / FAIL

clear_mem(ackWin)

encode_ackBuf

update_slotNumWin

init_send

send_open_msg

Timer.start

LRXSend.transfer

Timer.stop

decode_ackBuf

update_slotNumWin

send_data_msg

Timer.start

Timer.start

send_next_data

process_ack_msg

Timer.fired

Timer .fired

Nack / FAIL

Ack

No missing packet /
SUCCESS

Missing packet

Last slot

More slot

Ack

More try

Timout / FAIL

Timer .stop

LRXSend.transferDone

send_done

Figure 19: State Transition Diagram of Sender

IDLE

R_O

R_D

R_A

send_ack_msg(A)

clear_mem(ackWin)

encode_ackBuf

update_slotNumWin

init_receive

Open

Yes

No

Timer.stop
OpenData

send_ack_msg(O)

Timer.start

process_open_msg_common

Timer.stop

LRXReceive.accepted
TransferDone

receive_done

Timer.fired / FAIL

Timer.fired / FAIL

Data

Data

Timer.fired / FAIL

Timer.stop

update_slotNumWin

Timer.start

send_ack_msg(D)

Timer.start

write_history

send_ack_msg(D)

Last slot

Not full

Not last slot

Not seen

Seen
Full

SUCCESS

process_data_msg

Figure 20: State Transition Diagram of Receiver

data is lost. Sender times out. This is clearer in Figure 17.
As shown, receiver does not timeout to send Ack. There
are two reasons why only sender times out and stimulate
receiver for Ack. The first reason is shown in Figure 16.
If sender doesnt time out, for a receiver to make sure Ack
is delivered to sender, receiver should get acknowledgement
from sender for Ack itself. This is not good. So it is clear
that sender should timeout. Given that sender times out,
timeout of receiver makes no difference except that chan-
nel is wasted by unnecessary Ack from receiver. So timeout
in only sender side is desirable. As a second reason, if re-
ceiver times out, in case like Figure 18 (if first Data after
Ack is lost), second Data always collide with resent Ack of
receiver. This is not a good phenomenon. Therefore, after
sending last packet in each round, if acknowledgement does
not come, sender sends the last packet in that round again to
stimulate acknowledgement. However, this does not mean
receiver has no timeout. Receiver waits sufficient amount of
time, and if nothing happens, it regards the situation as a
failure. Figure 19 shows state transition diagram of sender,
and Figure 20 shows state transition diagram of receiver.

Throughput vs Window Size

0

50

100

150

200

250

300

1 2 4 8 16 Optimal

Window Size

T
h

ro
u

g
h

p
u

t
(B

yt
e/

s)

Throughput

Loss Rate X 1000

Figure 21: Throughput vs Window Size

Table 2: Channel Utilization
TOS Msg LRX (only

data)
LRX (Win-
dow Size 16)

Total Data
(bytes)

36 36 613

Meta Data
(bytes)

7 10 197

Real Data
(bytes)

29 26 416

Channel Uti-
lization (%)

78.38 72.22 67.86

Comparison to
TOS Msg (%)

100 89.66 84.24

5.2 Evaluation
Two performance metrics are evaluated: throughput, ro-
bustness. Robustness is partially tested by looking at whether
LRX successfully works under high loss rate. There are three
factors which determine throughput: interval between pack-
ets, window size, and loss rate. Interval between packets is
controlled by timer not to saturate channel. Now throttle is
fixed at 10 packets per second. Better way would be throt-
tling sending rate by looking at channel quality, like loss
rate. This issue will be discussed more in Section 8 Future
Work. For tests here, fixed rate (10 packets per second)
is used. Window size determines relative overhead of con-
trol packets (open session, acknowledgement). Therefore, as
window size increases, throughput also increases. Figure 21
shows test result. Optimal case is when window size is infi-
nite. For the case with window size 16, throughput is 88%
of optimal case. Considering loss rate of 3%, actual relative
throughput is 91%, which is higher than 85% of channel
utilization ratio. This is because 1) LRX tag overhead is
included for optimal case, 2) control packets do not follow
10 packets/s. Loss rate determines overhead for retransmis-
sions for lost packets. As loss rate increases, retransmission
increases, and throughput decreases. Figure 22 shows the
result. This graph also shows robustness of LRX. Even with
loss rate above 20%, LRX successfully transfers data.

Throughput vs Loss Rate

0

50

100

150

200

250

300

0 5 10 15 20 25

Loss Rate

T
h

ro
u

g
h

p
u

t
(B

yt
e/

s)

Throughput

of packets sent / 10

Figure 22: Throughput vs Loss Rate

Table 2 shows channel utilization for TOS Msg, and data
message of LRX, and overall LRX. TOS Msg has an over-
head of 7 bytes, and LRX data has 3 bytes overhead. Inclu-
sion of overhead of control message further decreases channel
utilization. LRX (data only) is the theoretical limit of LRX
(when window size is infinite). We can see that using LRX
lowers channel utilization by 15%.

6. SIGNAL PROCESSING AND SYSTEM IDEN-
TIFICATION

As an analog signal processing low-pass filter is used, which
filters high frequency noise. However as shown in Figure 23,
loss-pass filter is not perfect, and there exists some leftover
signal above threshold frequency. Therefore even if low-pass
filter is used, sampling frequency at ADC should be higher
than threshold frequency of low-pass filter. Moreover by
Nyquist theorem, to avoid aliasing, sampling rate should be
at least twice of signals frequency. For accelerometer board,
low-pass filter with threshold frequency 25Hz is used. Then
ADC should sample at frequency much higher than 50Hz.
As a digital signal processing, averaging is used. If noise fol-
lows Gaussian distribution, by averaging N numbers, noise
decreases by a factor of sqrt(N). This multiplies sampling
frequency by a factor of N. Currently averaging is option-
ally used for testing.

System identification is identifying model of target system.
By matching input to system and output from system, we
can construct a mathematical system model. Usual process
is fitting a general Box-Jenkins multi-input multi-output
model to sampled data. And natural frequencies, damp-
ing ratios and mode shape are then estimated using the
estimated Box-Jenkins model. Most part of system iden-
tification is to be done in the future.

7. CONCLUSION

Frequency

Amplitude

Filtering threshold Frequency

Amplitude

Filtering threshold

Figure 23: Imperfect Loss-pass Filter

Temperature

Gravity

Variation

Accelerometer

variation

Acoustic

Noise

nG

 G

mG

G

Temperature

Gravity

Variation

Accelerometer

variation

Acoustic

Noise

nG

 G

mG

G

Figure 24: Challenges versus Accuracy

New challenges are analyzed which are brought by structure
monitoring to wireless sensor network. High accuracy ac-
celerometer, high frequency sampling with low jitter, low-
pass filter, averaging, large-scale reliable data collection,
they all were not critical issues in conventional application
of wireless sensor networks. Those challenges are overcome
to sufficient degrees, however there are still many problems
to be solved. Figure 24 shows accelerometer accuracy and
diverse challenges which will be encountered in pursuit of
each degree of accuracy. It is straightforward that to achieve
higher accuracy target, we should overcome more challenges.
Those challenges in the figure are only a subset of already
recognized problems. We can expect unrecognized problems
will give additional challenges. However, as we can see in
Figure 25, the extent of applications enabled also increases,
as accuracy increases.

8. FUTURE WORK

Local Damage
Detection

Large Scale

Earthquake

Nuclear Test

Detection

Traffic
Identification

nG

 G

mG

G

Local Damage
Detection

Large Scale

Earthquake

Nuclear Test

Detection

Traffic
Identification

nG

 G

mG

G

Figure 25: Possible Applications versus Accuracy

Accelerometer should be calibrated with respect to temper-
ature. Industry uses even 5th order polynomial for cali-
bration. It requires a huge amount of effort. This is not
feasible in our case. First, calibration cost is too high for
low cost wireless sensor networks. Second, computation like
5th order polynomial for each sample is too expensive in
lese powerful, low cost devices. Therefore de-trending at
server side will be a good solution. After stamping each
data or each set of data with temperature, we can process
later. Temporal jitter is handled by high frequency sam-
pling component. Spatial jitter should be solved by time
synchronization. ITP[9] is a time synchronization protocol
widely used in Internet. In wireless sensor network, there
were several studies. In RBS[4], synchronization is done
among receivers, eliminating senders jitter in media access.
TPSN[5] put time stamp after obtaining channel. This gives
even better synchronization accuracy than RBS (10s com-
pared to 20s). Still there is a source of jitter at receiver
side. As we saw in jitter for sampling, handling interrupt
by radio can be delayed by atomic section of other activity.
As suggested in [5], putting time stamp at MAC layer in
receiver side will eliminate this jitter. To maximize utility
of channel, we need to monitor channel quality (loss rate),
and throttle packet injection rate accordingly. This is very
like media access control, just at higher level. This requires
eavesdropping channel, and needs access to lower network
layer breaking hierarchy. LRX transfers data from RAM to
RAM. Using LRX as a building block, multi-hop data col-
lection need be implemented. Exploiting linear geography
of bridge, pipelining can be used. Multi-channel can dis-
tribute traffic over multiple frequency spectrum and increase
throughput. Supernode like Stargate can be also used. As
a digital signal process, digital low-pass filter can be used,
to eliminate effect of imperfect analog low-pass filter.

9. ACKNOWLEDGEMENTS
This work is a part of Structural Health Monitoring of the
Golden Gate Bridge project with David Culler, James Dem-
mel, Gregory Fenves, Tom Oberheim, and Shamim Pakzad.
This work is supported, in part, by the National Science
Foundation under Grant No. EIA-0122599. Thank to Ra-
bin Patra and Sergiu Nedevschi for extensive discussion over
LRX protocol design. Robert Szewczyk gave critical com-
ment and help to jitter analysis. And Philip Buonadonna
gave important feedback for interface and protocol of LRX.

10. ADDITIONAL AUTHORS
Additional authors: Gregory Fenves (Department of Civil
and Environmental Engineering, University of California at
Berkeley, email: fenves@ce.berkeley.edu), Steve Glaser
(Department of Civil and Environmental Engineering, Uni-
versity of California at Berkeley, email: glaser@ce.berkeley.edu),
Thomas Oberheim and Shamim Pakzad (Department of Civil
and Environmental Engineering, University of California at
Berkeley email: shamimp@ce.berkeley.edu).

11. REFERENCES
[1]
http://webs.cs.berkeley.edu/tos/hardware/hardware.html.

[2] J. M. Caicedo, J. Marulanda, P. Thomson, and S. J.
Dyke. Monitoring of bridges to detect changes in
structural health. the Proceedings of the 2001

American Control Conference, Arlington, Virginia,
June 2527, 2001.

[3] P. Cheng, W. J. Shi, and W. Zheng. Large structure
health dynamic monitoring using gps technology.

[4] J. Elson, L. Girod, and D. Estrin. Fine-grained
network time synchronization using reference
broadcasts. the Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI
2002), Boston, MA. December 2002.

[5] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync protocol for sensor networks. SenSys 03,
November 5-7, 2003, Los Angeles, California, USA.

[6] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh,
and D. Rubenstein. Energy-efficient computing for
wildlife tracking: Design tradeoffs and early
experiences with zebranet. the Proceedings of
ASPLOS-X, San Jose, October 2002.

[7] J. P. Lynch, A. S. Kiremidjian, K. H. Law, T. Kenny,
and E. Carryer. Issues in wireless structural damage
monitoring technologies. the Proceedings of the 3rd
World Conference on Structural Control (WCSC),
Como, Italy, April 7-12, 2002.

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless sensor networks for habitat
monitoring. the 2002 ACM International Workshop on
Wireless Sensor Networks and Applications. WSNA
’02, Atlanta GA, September 28, 2002.

[9] D. L. Mills. Internet time synchronization: the
network time protocol. IEEE Trans. Communications,
39(10):1482–1493, October 1991.

[10] C. Ogaja, C. Rizos, J. Wang, and J. Brownjohn.
Toward the implementation of on-line structural
monitoring using rtk-gps and analysis of results using
the wavelet transform.

