

Structure Monitoring using Wireless Sensor Networks
CS294-1 Deeply Embedded Network Systems

Sukun Kim

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Abstract
Structure monitoring brings new challenges to

wireless sensor network: high-fidelity sampling,
collecting large volume of data, and sophisticated
signal processing. New accelerometer board
measures tens of µG acceleration. High frequency
sampling is enabled by new component of David Gay.
With new component, up to 6.67KHz sampling is
possible with jitter less than 10µs. Large-scale
Reliable Transfer (LRX) component collects data at
the expense of 15% penalty of channel utilization for
no data loss. To overcome low signal-to-noise ratio,
analog low-pass filter is used, and multiple digital
data are averaged. Structure monitoring is a driving
force for extending capability of wireless sensor
networks system.

1. Introduction
Wireless sensor network enables low-cost sensing

of environment. Many applications using wireless
sensor networks have low duty cycle and low power
consumption. However the ability of wireless sensor
networks can be extended in reverse way. Enhanced
TinyOS, and new components opened possibility for
more aggressive applications. Structure monitoring is
one example of such applications.

To monitor a structure (e.g. bridge, building), we
measure behavior (e.g. vibration, displacement) of
structure, and analyze health of the structure based
on measured data. Figure 1 shows overall system.
Each component can have multiple subcomponents.
In our case, sensor is accelerometer which will be
discussed in Section 2, and analog processing has
low-pass filter (Section 6.) Digital processing includes
averaging (Section 6), data collection (Section 5), and
system identification (Section 6). Low-jitter control
contains high-frequency sampling (Section 4). There
are more sub-components to be added in the future:
time synchronization in low-jitter control, calibration
and digital filtering in digital processing.

Analog
ProcessingSensor Digital

Processing
Analog to Digital
Converter (ADC)

FeedbackLow-Jitter
Control

Analog
ProcessingSensor Digital

Processing
Analog to Digital
Converter (ADC)

FeedbackLow-Jitter
Control

Figure 1 Overall System

Here we present challenges, findings, and our
experience in structure monitoring using wireless
sensor networks. Rather than focusing on one single
component, this paper overview overall system and
issues in each component.

2. Related Work
Habitat monitoring is a leading application of

wireless sensor network. And it is an example
application with low duty cycle. ZebraNet [1] uses
PDA-level device with 802.11b wireless network.
Great Duck Island [2] uses Berkeley mote, and watch
ducks without disturbing them at low cost.

For structure monitoring, there are tremendous
amount of research using conventional wired way.
GPS was used combined with wired data collection [3,
4], however at a high cost . There is an approach using
wireless network for data collection [5], which has
great advantage over wired network. However, it
uses large hardware platform (in terms of size, power,
and cost) which diminishes benefit of wireless
approach. [6] uses low-cost device and wireless
network, but it is more like conceptual test, and
fidelity is not sufficient for real deployment. We
begins with high fidelity sampling in the following
section.

3. Data Acquisition
Data acquisition is composed of mainly two

parts: data sampling, and data collection. Structure
monitoring requires high fidelity data sampling.
Accurate, high frequency sampling, and low jitter are
main requirement for high quality sample. Accuracy
is discussed in this section, and high frequency
sampling with low jitter will be covered in Section 4.
And data collection will be discussed in Section 5.

In structure monitoring, acceleration signal is
very week. Detecting even moderate earthquake
requires to measure 500µG acceleration. Sensitivity
and accuracy of accelerometer is crucial, so we put
significant portion of effort to accelerometer board.
New accelerometer board was designed by as shown
in Figure 2.

3.1. Accelerometers
It has two kinds of accelerometers: ADXL 202E,

Silicon Designs 1221L. Table 1 shows characteristics
of each accelerometer combined with entire system.
Accelerometer board contains 1 of ADXL 202E, and 2
of Silicon Designs 1221L, and 4 16bit analog to digital
converter (ADC). There are two channels for ADXL
202E, and two channels for Silicon Designs 1221L
with same orientation. One is parallel to gravity, and
the other is vertical to gravity. Initially both
accelerometers had range of -2G ~ 2G, but for better
sensitivity, range of Silicon Designs 1221L is change
to -0.1G ~ 0.1G. Channel with axis parallel to gravity
has 1G offset to compensate for offset by gravity. It
also contains one temperature sensor (reason will be
explained later). New version of Berkeley mote,
named as Mica2 [7], is used for control and
communication.

Figure 2 Accelerometer Board

Table 1 Two Accelerometers Combined with System

 ADXL 202E Silicon Designs
1221L

Type MEMS MEMS
Number of
axis

2 1

Range -2G ~ 2G -0.1G ~ 0.1G
System
noise floor

200(µG/vHz) 30(µG/vHz)

Price $10 $150

3.2. Noise Floor Test and Shaking Table Test
To see static characteristic of accelerometers,

accelerometer board was put to quiet place (from
vibration and sound) with constant temperature. This
test shows noise floor which is shown in Table 1. For

Silicon Designs 1221L, range was -0.1G ~ 0.3G. Then
to see dynamic behavior of accelerometers, we
performed shaking table test with constant
temperature. Even though test site was not
completely free from vibration and sound noise, it
was quiet enough for a dynamic range of shaking
table to dominate noise. Results are shown in Figure
3. Left figure is result of ADXL 202E, right one is
result of Silicon Designs 1221L, and driving
frequency is 0.5Hz. Data are read from both channels
at the same time. For this test, channel for Silicon
Designs 1221L had range of -2G ~ 2G.

0 2 4 6 8 10 12 1 4 16 18

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Low resolution Sensor, Test1, 0.5Hz

Time (sec)

A
cc

el
er

at
io

n
(g

)

0 2 4 6 8 10 12 14 16 18

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

High resolution Sensor, Test1, 0.5Hz

Time (sec)

A
cc

el
er

at
io

n
(g

)

Figure 3 Shake Table Test (0.5Hz)

We can see Silicon Designs 1221L shows cleaner
shape in both static situation and dynamic situation.
Figure 4 show another experiment on shaking table.
Here frequency increases while displacement remains
constant. When movement gets rigorous, Silicon
Designs 1221L does not properly read it. It seems like
Silicon Designs 1221L has larger damping factor than
ADXL 202E.

0 2 4 6 8 10 12 1 4 16 18

-1

-0.5

0

0.5

1

Low resolution Sensor, Test4, Increasing frequency

Time (sec)

A
cc

el
er

at
io

n
(g

)

0 2 4 6 8 10 12 1 4 16 18

-1

-0.5

0

0.5

1

High resolution Sensor, Test4, Increasing frequency

Time (sec)

A
cc

el
er

at
io

n
(g

)

Figure 4 Shaking Table Test (Increasing frequency
with same displacement)

3.3. Tilting Test and Vault Test
To measure linearity of accelerometer value, we

performed tilting test with help of Bob Uhrhammer.
By changing tilting degree of accelerometer, we can
obtain line showing acceleration value read versus
real acceleration. Only channel vertical to gravity is
measured of Silicon Designs 1221L. For this test,
range was -0.1G ~ 0.3G. Deviation from minimum
mean square error line is within 60µG

For a better noise floor test, we went to a vault in
Lawrence Berkeley Laboratory. Figure 5 shows how
quiet inside of vault is compared to normal office
environment. And it also shows reference reading
from very sophisticated accelerometer in the vault,
which is used for seismic research. System with
Silicon Designs 1221L shows 20dB higher noise level.
Figure 6 shows time plot of acceleration in vault and
office environment for 30 minute period. Red line
shows noise in normal office environment. We can
see noise from machines, which is also visible in
Figure 5. Blue line shows acceleration readings from
vault. Drift is observed in this case. On test day, it
was cold, and inside of vault was hot by lights. We
put accelerometer in a vault, and immediately started
sampling. So accelerometer board was under drastic
change in temperature. Drift is almost 10mG which is
significant compared to noise floor, and sensitivity.
More discussion on temperature will follow in
Section 8 Future work.

Figure 5 Noise Power Spectral Density

0 2 4 6 8 10 12

x 10
5

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
Time plot, Test 1 (McCone Hall) vs. Test 2 (Vault), Quiet Environment

Sample Number

A
cc

el
er

at
io

n
(g

)

Figure 6 Time Plot of Acceleration

4. High-frequency Sampling

Characteristic vibration frequency of a structure
is usually around 10Hz rage. However by Nyquist
theorem, sampling rate should be at least twice of
that. Moreover, to reduce effect of noise averaging is
used, and sampling rate is multiplied by the number
of samples averaged. All these factors increase
sampling rate to KHz level. Structure monitoring
requires regular sampling with uniform interval, and
jitter becomes harder problem as sampling rate gets
higher. There are two kinds of sources to jitter, and
they are shown in Figure 7. Temporal jitter occurs
inside of node, because actual sampling does not
occur at uniform interval. So even with only one node,
temporal jitter happens. Spatial jitter happens
because of variation in hardware, and imperfect time
synchronization. Even if two nodes agree to sample
at time T, this T occurs at different absolute times for
those two nodes. Spatial jitter occurs only when there
are more than one node. Here only temporal jitter is
considered. Spatial jitter will be discussed in Section 8
Future Work.

David Gay wrote a new component
HighFrequencySampling, which enables KHz range
sampling. This new component is introduced in
Section 4.1, jitter test result is shown in Section 4.2,
and theoretical jitter analysis follows in Section 4.3.

Node 1

Node 2

Node 3

Spatial jitter

Temporal jitter

Node 1

Node 2

Node 3

Spatial jitter

Temporal jitter

Figure 7 Sources of Jitter

4.1. HighFrequencySampling component
This component is written by David Gay for

sampling at KHz level frequency. Pre-existing
components can sample only up to 200Hz. There are

two major sub-components which enable high
frequency sampling.

MicroTimer is a new timer component which
directly accesses hardware timer, and does not
provide multiple abstract timers. This is very simple
and quick to process timer events. BufferLog is a
flash memory writer. It has two buffers. One is filled
up by upper layer application while the other buffer
is written to flash memory as a background task.
Those two components (MicroTimer, BufferLog) have
minimum amount and length of atomic section,
which blocks other operation and could introduce
queue overflow.

With HighFrequencySampling component,
6.67KHz sampling is achieved. With averaging 16
samples, 1KHz is achieved, which means 16KHz of
sampling.

4.2. Jitter Test
We tested jitter of HighFrequencySampling

component. Instead of storing acceleration value,
time is recorded so that we can measure jitter. Figure
8 shows jitter as time goes. There are two sections:
plain section, spiky section, even though at 6.67KHz
this separation is not clear. These two sections
constitute one epoch. It takes epoch period of time to
fill up buffer. During spiky period, buffer is written
to flash memory as a background task. At 1KHz, only
small portion of sampling is affected by flash
memory write. At 6.67KHz, flash memory write takes
too much portion of time to fill up buffer, most of
sampling are affected by flash memory write.
Looking at 5KHz case, even at 6.67KHz flash memory
write should not affect that many sampling. However,
overhead of sampling itself seems to have some effect.

There is another thing interesting. At plain
section, there is a constant delay for every sampling.
This delay is wake up time of CPU. When CPU is idle,
it enters a sleeping mode. And it takes 4 cycles to
recover. Since there is a function call to record time,
actually it takes 5 cycles here. Since CPU runs at
8MHz, this wakeup time is equal to 625ns.

450 460 470 480 490 500 510 520 530 540 550
-1

0

1

2

3

4

5

6

7

8

9

10
Interval: 1000ms

Sample

Ji
tte

r (
us

)

450 460 470 480 490 500 510 520 530 540 550
-1

0

1

2

3

4

5

6

7

8

9

10
Interval: 200ms

Sample

Ji
tte

r (
us

)

450 460 470 480 490 500 510 520 530 540 550
-1

0

1

2

3

4

5

6

7

8

9

10
Interval: 150ms

Sample

Ji
tte

r (
us

)

Figure 8 Jitter in Time Line (1KHz, 5KHz, 6.67KHz
respectively)

- 1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 1000ms

Jitter (us)

S
am

pl
e

- 1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 200ms

Jitter (us)

S
am

pl
e

- 1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 150ms

Jitter (us)

S
am

pl
e

Figure 9 Histogram of Jitter (1KHz, 5KHz, 6.67KHz
respectively)

Figure 9 shows distribution of jitter values
(histogram). We can see a peak at 625ns, which
is wakeup time. Except this peak, frequency of
jitter is largest near 0µs, and gradually decreases
as jitter value increases. And jitter values are
within 10µs. Next section analyzes this
phenomenon.

4.3. Jitter Analysis
Figure 10 shows interaction of sampling and

other job (flash memory write). Timer event for
sampling occurs regularly with uniform interval.
However to be serviced in CPU, CPU should finish
non-preemptible portion (in TinyOS, atomic section).
Then CPU handles events in event queue which came
before timer event. Then finally timer event for
sampling is handled. For our case, event queue is not
likely filled with other waiting events, so this
possibility is not considered here. Then the length of
atomic section in execution determines jitter.

Let T(i) be execution time of atomic section i, and
let X(i) be a random variable uniformly distributed in
[0, T(i)]. And let C be context switch time. Assume
that the probability of timer event occurring at any
point in atomic section i is same, then jitter will
follow C+X(i). Figure 11 shows this jitter model,
where F(i) is frequency of occurrence of atomic
section i.

Since jitter distribution of every atomic section
begins from C, the frequency is highest near C and
decreases as moving farther. And frequency drop at
C+T(i) by F(i), since atomic section i will not have any
distribution beyond C+T(i).

Actually there is a peak at C, because when
program is in preemptible section, it will
immediately service timer event after context switch
time C.

Sampling

Other job

Non-preemptible portion (atomic section) Preemptible task portion

Sampling

Other job

Non-preemptible portion (atomic section) Preemptible task portion
Figure 10 Occurrence of Jitter

Jitter

Sample

C C+T(k1) C+T(k2) . . .

F(k2)

F(k3)

Jitter

Sample

C C+T(k1) C+T(k2) . . .

F(k2)

F(k3)

Figure 11 Jitter Model

Test result matches quite well with theoretical
model here. And we can also notice that context
switch time C is 0, which means timer event is
handled immediately if program is not in atomic
section. There is one bad news. Worst case jitter is
determined by the longest atomic section of the entire
system. So even if we have good component at low
layer, if upper application layer is not well written,
system will suffer long worst case jitter.

High frequency sampling with high accuracy

produces a large amount of data. This large amount
of data can not be collected at real time through
wireless communication. So we store data to flash
first. And after sampling enough data, collection
starts, and data in flash memory are transferred.
Transferring large amount of data is another
challenge. Next Section explains how we transfer
huge volume of data efficiently.

5. Large-scale Reliable Data Transfer

As we sample at high frequency with large
number of nodes, the amount of data gets large
quickly. Let us assume each node store 4Byte of data
and 4Byte of time stamp at 100Hz. And assume there
are 100 nodes, radio throughput is 1.2KB/s, and data
is collected to one base station. If acceleration data
worthy 5 minutes is collected, each node will transfer
240,000Bytes. 100 nodes will transfer 24,000,000Bytes.
Since the end link to base station is a bottleneck, it
will take more than 5 hours. We can see bandwidth is
narrow compared to aggressive data sampling. Even
if we alleviate this problem using multi-channel or
multi-tier network, still we will be in short of
bandwidth.

Moreover, we need to transfer data reliably. We
will be able to overcome some packet losses using
data processing, but at current stage we do not
assume this technique.

These needs lead to efficient large-scale reliable
data transfer. Right now RAM to RAM transfer is
implemented as a building block. Multi-hop flash
memory to flash memory transfer will be discussed
in Section 8 Future Work.

5.1. Protocol
Large-scale Reliable Transfer (LRX) component

assumes that data resides in RAM. Upper layer
should handle non-volatile storage. LRX transfers one
data cluster, which is composed of several blocks.
One block fits into one packet, so the number of
blocks is equal to window size. Each data cluster has
a data description. After looking at data description,

receiver may deny data (receiver already has that
data, or that data is not useful anymore).

Explicit open handshake is used. Data
description and size of cluster is sent as a transfer
request. If receiver has enough RAM, and application
layer agrees on data description, then receiver sends
acknowledgement for transfer request.

Once connection is established, actual data is
transferred. Protocol at high level can be summarized
as selective acknowledgement and retransmission.
Data transfer is composed of multiple rounds. In each
round, sender sends packets missing in the previous
round. At the end of each round, receiver sends
acknowledgement saying which packets are missing.
Then sender, after looking at this acknowledgement,
sends packet missing again. The first round can be
thought of as a special case where every packet was
missing in the previous (imaginary) round.

Tear-down is implicit. Successful tear-down
cannot be guaranteed anyway, however close phase
will introduce overhead, and delay. We favored
quick movement to next connection, and eliminated
close phase.

Sender Receiver

Open

Ack for
Open

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

DONE

Sender Receiver

Open

Ack for
Open

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

DONE

Figure 12 No Lost Packet

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ack for
Open

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ack for
Open

Figure 13 Open is lost

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ack for
Open

Ack for
Open

Sender Receiver

Open

Data
Block 1

Data
Block 2

Open

Ack for
Open

Ack for
Open

Figure 14 Ack for Open is lost

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 2

Ack for
Data

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 2

Ack for
Data

Figure 15 Data Block 2 is lost

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 4

Ack for
Data

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

DONE

Data
Block 4

Ack for
Data

Figure 16 Ack for Data is lost

Sender Receiver
Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

Data
Block 4

Ack for
Data DONE

Sender Receiver
Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

DONE

Data
Block 4

Ack for
Data DONE

Figure 17 Data Block 4 is lost (no timeout to send ack)

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

Data
Block 2

Ack for
Data

Data
Block 3

Sender Receiver

Ack for
Data

Data
Block 1

Data
Block 2
Data
Block 3
Data
Block 4

Data
Block 2

Ack for
Data

Data
Block 3

Figure 18 After Ack, when the first Data is lost

Any packet can be lost during transfer, so there is
timeout for every wait to prevent indefinite waiting.

Figure 12 shows case with no packet loss. When
Open packet is lost as in Figure 13, Open is
retransmitted after timeout. When Ack for Open is
lost as in Figure 13Figure 14, Open is retransmitted
also after timeout. Figure 15 shows what happens if
Data packet is lost. After looking at
acknowledgement, sender resends lost data. Figure
16 shows when Ack for data is lost. Sender times out.
This is clearer in Figure 17. As shown, receiver does
not timeout to send Ack.

There are two reasons why only sender times out
and stimulate receiver for Ack. The first reason is
shown in Figure 16. If sender doesn’t time out, for a
receiver to make sure Ack is delivered to sender,
receiver should get acknowledgement from sender
for Ack itself. This is not good. So it is clear that
sender should timeout. Given that sender times out,
timeout of receiver makes no difference except that
channel is wasted by unnecessary Ack from receiver.
So timeout in only sender side is desirable. As a
second reason, if receiver times out, in case like
Figure 18 (if first Data after Ack is lost), second Data
always collide with resent Ack of receiver. This is not
a good phenomenon. Therefore, after sending last
packet in each round, if acknowledgement does not
come, sender sends the last packet in that round
again to stimulate acknowledgement. However, this
does not mean receiver has no timeout. Receiver
waits sufficient amount of time, and if nothing
happens, it regards the situation as a failure.

Figure 19 shows state transition diagram of
sender, and Figure 20 shows state transition
diagram of receiver.

Figure 19 State Transition Diagram of Sender

Figure 20 State Transition Diagram of Receiver

5.2. Evaluation
Two performance metrics are evaluated:

throughput, robustness. Robustness is partially tested
by looking at whether LRX successfully works under
high loss rate.

There are three factors which determine
throughput: interval between packets, window size,
and loss rate.

Interval between packets is controlled by timer
not to saturate channel. Now throttle is fixed at 10
packets per second. Better way would be throttling
sending rate by looking at channel quality, like loss
rate. This issue will be discussed more in Section 8
Future Work. For tests here, fixed rate (10 packets per
second) is used.

Window size determines relative overhead of
control packets (open session, acknowledgement).
Therefore, as window size increases, throughput also
increases. Figure 21 shows test result. Optimal case
is when window size is infinite. For the case with
window size 16, throughput is 88% of optimal case.
Considering loss rate of 3%, actual relative
throughput is 91%, which is higher than 85% of
channel utilization ratio. This is because 1) LRX tag
overhead is included for optimal case, 2) control
packets do not follow 10 packets/s.

Loss rate determines overhead for
retransmissions for lost packets. As loss rate increases,
retransmission increases, and throughput decreases.
Figure 22 shows the result. This graph also shows
robustness of LRX. Even with loss rate above 20%,
LRX successfully transfers data.

Throughput vs Window Size

0

50

100

150

200

250

300

1 2 4 8 16 Optimal
Window Size

T
h

ro
u

g
h

p
u

t (
B

yt
e/

s)

Throughput

Loss Rate X 1000

Figure 21 Throughput vs Window Size

Throughput vs Loss Rate

0

50

100

150

200

250

300

0 5 10 15 20 25

Loss Rate

Th
ro

ug
hp

ut
 (

B
yt

e/
s)

Throughput

of packets sent / 10

Figure 22 Throughput vs Loss Rate

Table 2 Channel Utilization

 TOS_Msg LRX
(only
data)

LRX
(Window
Size 16)

Total Data
(bytes)

36 36 613

Meta Data
(bytes)

7 10 197

Real Data
(bytes)

29 26 416

Channel
Utilization (%)

78.38 72.22 67.86

Comparison to
TOS_Msg (%)

100 89.66 84.24

Table 2 shows channel utilization for TOS_Msg,
and data message of LRX, and overall LRX. TOS_Msg
has an overhead of 7 bytes, and LRX data has 3 bytes
overhead. Inclusion of overhead of control message
further decreases channel utilization. LRX (data only)
is the theoretical limit of LRX (when window size is
infinite). We can see that using LRX lowers channel
utilization by 15%.

6. Signal Processing and System Identification

As an analog signal processing low-pass filter is
used, which filters high frequency noise. However as
shown in Figure 23, loss-pass filter is not perfect,
and there exists some leftover signal above threshold
frequency. Therefore even if low-pass filter is used,
sampling frequency at ADC should be higher than
threshold frequency of low-pass filter. Moreover by
Nyquist theorem, to avoid aliasing, sampling rate
should be at least twice of signal’s frequency. For
accelerometer board, low-pass filter with threshold
frequency 25Hz is used. Then ADC should sample at
frequency much higher than 50Hz.

As a digital signal processing, averaging is used.
If noise follows Gaussian distribution, by averaging
N numbers, noise decreases by a factor of sqrt(N).
This multiplies sampling frequency by a factor of N.
Currently averaging is optionally used for testing.

Frequency

Amplitude

Filtering threshold Frequency

Amplitude

Filtering threshold
Figure 23 Imperfect Loss-pass Filter

System identification is identifying model of
target system. By matching input to system and
output from system, we can construct a mathematical
system model. Usual process is fitting a general Box-
Jenkins multi-input multi-output model to sampled
data. And natural frequencies, damping ratios and
mode shape are then estimated using the estimated
Box-Jenkins model. Most part of system identification
is to be done in the future.

7. Conclusion

New challenges are analyzed which are brought
by structure monitoring to wireless sensor network.
High accuracy accelerometer, high frequency
sampling with low jitter, low-pass filter, averaging,
large-scale reliable data collection, they all were not
critical issues in conventional application of wireless
sensor networks. Those challenges are overcome to

sufficient degrees, however there are still many
problems to be solved.

Figure 24 shows accelerometer accuracy and
diverse challenges which will be encountered in
pursuit of each degree of accuracy. It is
straightforward that to achieve higher accuracy target,
we should overcome more challenges. Those
challenges in the figure are only a subset of already
recognized problems. We can expect unrecognized
problems will give additional challenges. However,
as we can see in Figure 25, the extent of applications
enabled also increases, as accuracy increases.

Temperature

Gravity
Variation

Accelerometer
variation

Acoustic
Noise

nG

µG

mG

G

Temperature

Gravity
Variation

Accelerometer
variation

Acoustic
Noise

nG

µG

mG

G

Figure 24 Challenges versus Accuracy

Local Damage
Detection

Large Scale
Earthquake

Nuclear Test
Detection

Traffic
Identification

nG

µG

mG

G

Local Damage
Detection

Large Scale
Earthquake

Nuclear Test
Detection

Traffic
Identification

nG

µG

mG

G

Figure 25 Possible Applications versus Accuracy

8. Future Work

Accelerometer should be calibrated with respect
to temperature. Industry uses even 5 th order
polynomial for calibration. It requires a huge amount
of effort. This is not feasible in our case. First,
calibration cost is too high for low cost wireless
sensor networks. Second, computation like 5th order
polynomial for each sample is too expensive in lese
powerful, low cost devices. Therefore de-trending at
server side will be a good solution. After stamping
each data or each set of data with temperature, we
can process later.

Temporal jitter is handled by high frequency
sampling component. Spatial jitter should be solved
by time synchronization. ITP [8] is a time
synchronization protocol widely used in Internet. In
wireless sensor network, there were several studies.

In RBS [9], synchronization is done among receivers,
eliminating sender’s jitter in media access. TPSN [10]
put time stamp after obtaining channel. This gives
even better synchronization accuracy than RBS (10µs
compared to 20µs). Still there is a source of jitter at
receiver side. As we saw in jitter for sampling,
handling interrupt by radio can be delayed by atomic
section of other activity. As suggested in [10], putting
time stamp at MAC layer in receiver side will
eliminate this jitter.

To maximize utility of channel, we need to
monitor channel quality (loss rate), and throttle
packet injection rate accordingly. This is very like
media access control, just at higher level. This
requires eavesdropping channel, and needs access to
lower network layer breaking hierarchy.

LRX transfers data from RAM to RAM. Using
LRX as a building block, multi-hop data collection
need be implemented. Exploiting linear geography of
bridge, pipelining can be used. Multi-channel can
distribute traffic over multiple frequency spectrum
and increase throughput. Supernode like Stargate can
be also used.

As a digital signal process, digital low-pass filter
can be used, to eliminate effect of imperfect analog
low-pass filter.

9. Acknowledgement

This work is a part of ‘Structural Health
Monitoring of the Golden Gate Bridge’ project with
David Culler, James Demmel, Gregory Fenves, Tom
Oberheim, and Shamim Pakzad. This work is
supported, in part, by the National Science
Foundation under Grant No. EIA-0122599. Thank to
Rabin Patra and Sergiu Nedevschi for extensive
discussion over LRX protocol design. Robert
Szewczyk gave critical comment and help to jitter
analysis. And Philip Buonadonna gave important
feedback for interface and protocol of LRX.

10. Reference
[1] Philo Juang, Hide Oki, Yong Wang, Margaret
Martonosi, Li-Shiuan Peh, Daniel Rubenstein.
Energy-Efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with
ZebraNet, in Proceedings of ASPLOS-X, San Jose,
October 2002.
[2] Alan Mainwaring, Joseph Polastre, Robert
Szewczyk, David Culler, John Anderson. Wireless
Sensor Networks for Habitat Monitoring, in the 2002
ACM International Workshop on Wireless Sensor
Networks and Applications. WSNA '02, Atlanta GA,
September 28, 2002.
[3] Clement Ogaja, Chris Rizos, Jinling Wang, James
Brownjohn. Toward the Implementation of On-line

Structural Monitoring Using RTK-GPS and Analysis
of Results Using the Wavelet Transform.
[4] Penggen Cheng, Wenzhong John Shi, Wanxing
Zheng. Large Structure Health Dynamic Monitoring
Using GPS Technology.
[5] Juan M. Caicedo, Johannio Marulanda, Peter
Thomson, and Shirley J. Dyke. Monitoring of Bridges
to Detect Changes in Structural Health, in the
Proceedings of the 2001 American Control
Conference, Arlington, Virginia, June 25–27, 2001.
[6] Jerome Peter Lynch, Anne S. Kiremidjian, Kincho
H. Law, Thomas Kenny and Ed Carryer. Issues in
Wireless Structural Damage Monitoring Technologies,
in the Proceedings of the 3rd World Conference on
Structural Control (WCSC), Como, Italy, April 7-12,
2002.
[7]
http://webs.cs.berkeley.edu/tos/hardware/hardwa
re.html
[8] Mills, D.L. Internet time synchronization: the
Network Time Protocol. IEEE Trans.
Communications 39, 10 (October 1991), 1482-1493.
[9] Jeremy Elson, Lewis Girod and Deborah Estrin.
Fine-Grained Network Time Synchronization using
Reference Broadcasts, in Proceedings of the Fifth
Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, MA.
December 2002.
[10] Saurabh Ganeriwal, Ram Kumar, Mani B.
Srivastava. Timing-Sync protocol for Sensor
Networks, in SenSys ’03, November 5-7, 2003, Los
Angeles, California, USA.

