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Abstract 
Structure monitoring brings new challenges to 

wireless sensor network: high-fidelity sampling, 
collecting large volume of data, and sophisticated 
signal processing. New accelerometer board 
measures tens of µG acceleration. High frequency 
sampling is enabled by new component of David Gay. 
With new component, up to 6.67KHz sampling is 
possible with jitter less than 10µs. Large-scale 
Reliable Transfer (LRX) component collects data at 
the expense of 15% penalty of channel utilization for 
no data loss. To overcome low signal-to-noise ratio, 
analog low-pass filter is used, and multiple digital 
data are averaged. Structure monitoring is a driving 
force for extending capability of wireless sensor 
networks system. 
 

1. Introduction 
Wireless sensor network enables low-cost sensing 

of environment. Many applications using wireless 
sensor networks have low duty cycle and low power 
consumption. However the ability of wireless sensor 
networks can be extended in reverse way. Enhanced 
TinyOS, and new components opened possibility for 
more aggressive applications. Structure monitoring is 
one example of such applications. 

To monitor a structure (e.g. bridge, building), we 
measure behavior (e.g. vibration, displacement) of 
structure, and analyze health of the structure based 
on measured data. Figure 1 shows overall system. 
Each component can have multiple subcomponents. 
In our case, sensor is accelerometer which will be 
discussed in Section 2, and analog processing has 
low-pass filter (Section 6.) Digital processing includes 
averaging (Section 6), data collection (Section 5), and 
system identification (Section 6). Low-jitter control 
contains high-frequency sampling (Section 4). There 
are more sub-components to be added in the future: 
time synchronization in low-jitter control, calibration 
and digital filtering in digital processing. 
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Figure 1 Overall System 

Here we present challenges, findings, and our 
experience in structure monitoring using wireless 
sensor networks. Rather than focusing on one single 
component, this paper overview overall system and 
issues in each component. 
 

2. Related Work 
Habitat monitoring is a leading application of 

wireless sensor network. And it is an example 
application with low duty cycle. ZebraNet [1] uses 
PDA-level device with 802.11b wireless network. 
Great Duck Island [2] uses Berkeley mote, and watch 
ducks without disturbing them at low cost. 

For structure monitoring, there are tremendous 
amount of research using conventional wired way. 
GPS was used combined with wired data collection [3, 
4], however at a high cost . There is an approach using 
wireless network for data collection [5], which has 
great advantage over wired network. However, it 
uses large hardware platform (in terms of size, power, 
and cost) which diminishes benefit of wireless 
approach. [6] uses low-cost device and wireless 
network, but it is more like conceptual test, and 
fidelity is not sufficient for real deployment. We 
begins with high fidelity sampling in the following 
section. 
 

3. Data Acquisition 
Data acquisition is composed of mainly two 

parts: data sampling, and data collection. Structure 
monitoring requires high fidelity data sampling. 
Accurate, high frequency sampling, and low jitter are 
main requirement for high quality sample. Accuracy 
is discussed in this section, and high frequency 
sampling with low jitter will be covered in Section 4. 
And data collection will be discussed in Section 5. 



In structure monitoring, acceleration signal is 
very week. Detecting even moderate earthquake 
requires to measure 500µG acceleration. Sensitivity 
and accuracy of accelerometer is crucial, so we put 
significant portion of effort to accelerometer board. 
New accelerometer board was designed by as shown 
in Figure 2. 

 
3.1. Accelerometers 
It has two kinds of accelerometers: ADXL 202E, 

Silicon Designs 1221L. Table 1 shows characteristics 
of each accelerometer combined with entire system. 
Accelerometer board contains 1 of ADXL 202E, and 2 
of Silicon Designs 1221L, and 4 16bit analog to digital 
converter (ADC). There are two channels for ADXL 
202E, and two channels for Silicon Designs 1221L 
with same orientation. One is parallel to gravity, and 
the other is vertical to gravity. Initially both 
accelerometers had range of -2G ~ 2G, but for better 
sensitivity, range of Silicon Designs 1221L is change 
to -0.1G ~ 0.1G. Channel with axis parallel to gravity 
has 1G offset to compensate for offset by gravity. It 
also contains one temperature sensor (reason will be 
explained later). New version of Berkeley mote, 
named as Mica2 [7], is used for control and 
communication. 

 
Figure 2 Accelerometer Board 

Table 1 Two Accelerometers Combined with System 

 ADXL 202E Silicon Designs 
1221L 

Type MEMS MEMS 
Number of 
axis 

2 1 

Range -2G ~ 2G -0.1G ~ 0.1G 
System 
noise floor 

200(µG/vHz) 30(µG/vHz) 

Price $10 $150 
 

3.2. Noise Floor Test and Shaking Table Test 
To see static characteristic of accelerometers, 

accelerometer board was put to quiet place (from 
vibration and sound) with constant temperature. This 
test shows noise floor which is shown in Table 1. For 

Silicon Designs 1221L, range was -0.1G ~ 0.3G. Then 
to see dynamic behavior of accelerometers, we 
performed shaking table test  with constant 
temperature. Even though test site was not 
completely free from vibration and sound noise, it 
was quiet enough for a dynamic range of shaking 
table to dominate noise. Results are shown in Figure 
3. Left figure is result of ADXL 202E, right one is 
result of Silicon Designs 1221L, and driving 
frequency is 0.5Hz. Data are read from both channels 
at the same time. For this test, channel for Silicon 
Designs 1221L had range of -2G ~ 2G. 
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Figure 3 Shake Table Test (0.5Hz)  

We can see Silicon Designs 1221L shows cleaner 
shape in both static situation and dynamic situation. 
Figure 4 show another experiment on shaking table. 
Here frequency increases while displacement remains 
constant. When movement gets rigorous, Silicon 
Designs 1221L does not properly read it. It seems like 
Silicon Designs 1221L has larger damping factor than 
ADXL 202E. 
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Figure 4 Shaking Table Test (Increasing frequency 
with same displacement) 

 
3.3. Tilting Test and Vault Test 
To measure linearity of accelerometer value, we 

performed tilting test  with help of Bob Uhrhammer. 
By changing tilting degree of accelerometer, we can 
obtain line showing acceleration value read versus 
real acceleration. Only channel vertical to gravity is 
measured of Silicon Designs 1221L. For this test, 
range was -0.1G ~ 0.3G. Deviation from minimum 
mean square error line is within 60µG 

For a better noise floor test, we went to a vault in 
Lawrence Berkeley Laboratory. Figure 5 shows how 
quiet inside of vault is compared to normal office 
environment. And it also shows reference reading 
from very sophisticated accelerometer in the vault, 
which is used for seismic research. System with 
Silicon Designs 1221L shows 20dB higher noise level. 
Figure 6 shows time plot of acceleration in vault and 
office environment for 30 minute period. Red line 
shows noise in normal office environment. We can 
see noise from machines, which is also visible in 
Figure 5. Blue line shows acceleration readings from 
vault. Drift is observed in this case. On test day, it 
was cold, and inside of vault was hot by lights. We 
put accelerometer in a vault, and immediately started 
sampling. So accelerometer board was under drastic 
change in temperature. Drift is almost 10mG which is 
significant compared to noise floor, and sensitivity. 
More discussion on temperature will follow in 
Section 8 Future work. 

 

Figure 5 Noise Power Spectral Density 
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Figure 6 Time Plot of Acceleration 

 
4. High-frequency Sampling 

Characteristic vibration frequency of a structure 
is usually around 10Hz rage. However by Nyquist 
theorem, sampling rate should be at least twice of 
that. Moreover, to reduce effect of noise averaging is 
used, and sampling rate is multiplied by the number 
of samples averaged. All these factors increase 
sampling rate to KHz level. Structure monitoring 
requires regular sampling with uniform interval, and 
jitter becomes harder problem as sampling rate gets 
higher. There are two kinds of sources to jitter, and 
they are shown in Figure 7. Temporal jitter occurs 
inside of node, because actual sampling does not 
occur at uniform interval. So even with only one node, 
temporal jitter happens. Spatial jitter happens 
because of variation in hardware, and imperfect time 
synchronization. Even if two nodes agree to sample 
at time T, this T occurs at different absolute times for 
those two nodes. Spatial jitter occurs only when there 
are more than one node. Here only temporal jitter is 
considered. Spatial jitter will be discussed in Section 8 
Future Work. 

David Gay wrote a new component 
HighFrequencySampling, which enables KHz range 
sampling. This new component is introduced in 
Section 4.1, jitter test result is shown in Section 4.2, 
and theoretical jitter analysis follows in Section 4.3. 
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Figure 7 Sources of Jitter 

 
4.1. HighFrequencySampling component 
This component is written by David Gay for 

sampling at KHz level frequency. Pre-existing 
components can sample only up to 200Hz. There are 



two major sub-components which enable high 
frequency sampling. 

MicroTimer is a new timer component which 
directly accesses hardware timer, and does not 
provide multiple abstract timers. This is very simple 
and quick to process timer events. BufferLog is a 
flash memory writer. It has two buffers. One is filled 
up by upper layer application while the other buffer 
is written to flash memory as a background task. 
Those two components (MicroTimer, BufferLog) have 
minimum amount and length of atomic section, 
which blocks other operation and could introduce 
queue overflow. 

With HighFrequencySampling component, 
6.67KHz sampling is achieved. With averaging 16 
samples, 1KHz is achieved, which means 16KHz of 
sampling. 

 
4.2. Jitter Test 
We tested jitter of HighFrequencySampling 

component. Instead of storing acceleration value, 
time is recorded so that we can measure jitter. Figure 
8 shows jitter as time goes. There are two sections: 
plain section, spiky section, even though at 6.67KHz 
this separation is not clear. These two sections 
constitute one epoch. It takes epoch period of time to 
fill up buffer. During spiky period, buffer is written 
to flash memory as a background task. At 1KHz, only 
small portion of sampling is affected by flash 
memory write. At 6.67KHz, flash memory write takes 
too much portion of time to fill up buffer, most of 
sampling are affected by flash memory write. 
Looking at 5KHz case, even at 6.67KHz flash memory 
write should not affect that many sampling. However, 
overhead of sampling itself seems to have some effect. 

There is another thing interesting. At plain 
section, there is a constant delay for every sampling. 
This delay is wake up time of CPU. When CPU is idle, 
it enters a sleeping mode. And it takes 4 cycles to 
recover. Since there is a function call to record time, 
actually it takes 5 cycles here. Since CPU runs at 
8MHz, this wakeup time is equal to 625ns. 
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Figure 8 Jitter in Time Line (1KHz, 5KHz, 6.67KHz 
respectively) 
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Figure 9 Histogram of Jitter (1KHz, 5KHz, 6.67KHz 
respectively) 



Figure 9 shows distribution of jitter values 
(histogram). We can see a peak at 625ns, which 
is wakeup time. Except this peak, frequency of 
jitter is largest near 0µs, and gradually decreases 
as jitter value increases. And jitter values are 
within 10µs. Next section analyzes this 
phenomenon. 
 

4.3. Jitter Analysis 
Figure 10 shows interaction of sampling and 

other job (flash memory write). Timer event for 
sampling occurs regularly with uniform interval. 
However to be serviced in CPU, CPU should finish 
non-preemptible portion (in TinyOS, atomic section). 
Then CPU handles events in event queue which came 
before timer event. Then finally timer event for 
sampling is handled. For our case, event queue is not 
likely filled with other waiting events, so this 
possibility is not considered here. Then the length of 
atomic section in execution determines jitter. 

Let T(i) be execution time of atomic section i, and 
let X(i) be a random variable uniformly distributed in 
[0, T(i)]. And let C be context switch time. Assume 
that the probability of timer event occurring at any 
point in atomic section i is same, then jitter will 
follow C+X(i). Figure 11 shows this jitter model, 
where F(i) is frequency of occurrence of atomic 
section i. 

Since jitter distribution of every atomic section 
begins from C, the frequency is highest near C and 
decreases as moving farther. And frequency drop at 
C+T(i) by F(i), since atomic section i will not have any 
distribution beyond C+T(i). 

Actually there is a peak at C, because when 
program is in preemptible section, it will 
immediately service timer event after context switch 
time C. 
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Figure 10 Occurrence of Jitter 
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Figure 11 Jitter Model  

Test result matches quite well with theoretical 
model here. And we can also notice that context 
switch time C is 0, which means timer event is 
handled immediately if program is not in atomic 
section. There is one bad news. Worst case jitter is 
determined by the longest atomic section of the entire 
system. So even if we have good component at low 
layer, if upper application layer is not well written, 
system will suffer long worst case jitter. 

 
High frequency sampling with high accuracy 

produces a large amount of data. This large amount 
of data can not be collected at real time through 
wireless communication. So we store data to flash 
first. And after sampling enough data, collection 
starts, and data in flash memory are transferred. 
Transferring large amount of data is another 
challenge. Next Section explains how we transfer 
huge volume of data efficiently. 
 
5. Large-scale Reliable Data Transfer 

As we sample at high frequency with large 
number of nodes, the amount of data gets large 
quickly. Let us assume each node store 4Byte of data 
and 4Byte of time stamp at 100Hz. And assume there 
are 100 nodes, radio throughput is 1.2KB/s, and data 
is collected to one base station. If acceleration data 
worthy 5 minutes is collected, each node will transfer 
240,000Bytes. 100 nodes will transfer 24,000,000Bytes. 
Since the end link to base station is a bottleneck, it 
will take more than 5 hours. We can see bandwidth is 
narrow compared to aggressive data sampling. Even 
if we alleviate this problem using multi-channel or 
multi-tier network, still we will be in short of 
bandwidth. 

Moreover, we need to transfer data reliably. We 
will be able to overcome some packet losses using 
data processing, but at current stage we do not 
assume this technique. 

These needs lead to efficient large-scale reliable 
data transfer. Right now RAM to RAM transfer is 
implemented as a building block. Multi-hop flash 
memory to flash memory transfer will be discussed 
in Section 8 Future Work. 

 
5.1. Protocol 
Large-scale Reliable Transfer (LRX) component 

assumes that data resides in RAM. Upper layer 
should handle non-volatile storage. LRX transfers one 
data cluster, which is composed of several blocks. 
One block fits into one packet, so the number of 
blocks is equal to window size. Each data cluster has 
a data description. After looking at data description, 



receiver may deny data (receiver already has that 
data, or that data is not useful anymore). 

Explicit open handshake is used. Data 
description and size of cluster is sent as a transfer 
request. If receiver has enough RAM, and application 
layer agrees on data description, then receiver sends 
acknowledgement for transfer request. 

Once connection is established, actual data is 
transferred. Protocol at high level can be summarized 
as selective acknowledgement and retransmission. 
Data transfer is composed of multiple rounds. In each 
round, sender sends packets missing in the previous 
round. At the end of each round, receiver sends 
acknowledgement saying which packets are missing. 
Then sender, after looking at this acknowledgement, 
sends packet missing again. The first round can be 
thought of as a special case where every packet was 
missing in the previous (imaginary) round. 

Tear-down is implicit.  Successful tear-down 
cannot be guaranteed anyway, however close phase 
will introduce overhead, and delay. We favored 
quick movement to next connection, and eliminated 
close phase. 
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Figure 12 No Lost Packet 
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Figure 13 Open is lost 
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Figure 14 Ack for Open is lost 
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Figure 15 Data Block 2 is lost 
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Figure 16 Ack for Data is lost 
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Figure 17 Data Block 4 is lost (no timeout to send ack) 
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Figure 18 After Ack, when the first Data is lost 

Any packet can be lost during transfer, so there is 
timeout for every wait to prevent indefinite waiting. 

Figure 12 shows case with no packet loss. When 
Open packet is lost as in Figure 13, Open is 
retransmitted after timeout. When Ack for Open is 
lost as in Figure 13Figure 14, Open is retransmitted 
also after timeout. Figure 15 shows what happens if 
Data packet is lost. After looking at 
acknowledgement, sender resends lost data. Figure 
16 shows when Ack for data is lost. Sender times out. 
This is clearer in Figure 17. As shown, receiver does 
not timeout to send Ack.  

There are two reasons why only sender times out 
and stimulate receiver for Ack. The first reason is 
shown in Figure 16. If sender doesn’t time out, for a 
receiver to make sure Ack is delivered to sender, 
receiver should get acknowledgement from sender 
for Ack itself. This is not good. So it is clear that 
sender should timeout. Given that sender times out, 
timeout of receiver makes no difference except that 
channel is wasted by unnecessary Ack from receiver. 
So timeout in only sender side is desirable. As a 
second reason, if receiver times out, in case like 
Figure 18 (if first Data after Ack is lost), second Data 
always collide with resent Ack of receiver. This is not 
a good phenomenon. Therefore, after sending last 
packet in each round, if acknowledgement does not 
come, sender sends the last packet in that round 
again to stimulate acknowledgement. However, this 
does not mean receiver has no timeout. Receiver 
waits sufficient amount of time, and if nothing 
happens, it regards the situation as a failure. 

Figure 19 shows state transition diagram of 
sender, and Figure 20 shows state transition 
diagram of receiver. 

 
Figure 19 State Transition Diagram of Sender 



 

Figure 20 State Transition Diagram of Receiver 

 
5.2. Evaluation 
Two performance metrics are evaluated: 

throughput, robustness. Robustness is partially tested 
by looking at whether LRX successfully works under 
high loss rate. 

There are three factors which determine 
throughput: interval between packets, window size, 
and loss rate. 

Interval between packets is controlled by timer 
not to saturate channel. Now throttle is fixed at 10 
packets per second. Better way would be throttling 
sending rate by looking at channel quality, like loss 
rate. This issue will be discussed more in Section 8 
Future Work. For tests here, fixed rate (10 packets per 
second) is used. 

Window size determines relative overhead of 
control packets (open session, acknowledgement). 
Therefore, as window size increases, throughput also 
increases. Figure 21 shows test result. Optimal case 
is when window size is infinite. For the case with 
window size 16, throughput is 88% of optimal case. 
Considering loss rate of 3%, actual relative 
throughput is 91%, which is higher than 85% of 
channel utilization ratio. This is because 1) LRX tag 
overhead is included for optimal case, 2) control 
packets do not follow 10 packets/s. 

Loss rate determines overhead for 
retransmissions for lost packets. As loss rate increases, 
retransmission increases, and throughput decreases. 
Figure 22 shows the result. This graph also shows 
robustness of LRX. Even with loss rate above 20%, 
LRX successfully transfers data. 
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Figure 21 Throughput vs Window Size  
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Figure 22 Throughput vs Loss Rate 

Table 2 Channel Utilization 

 TOS_Msg LRX 
(only 
data) 

LRX 
(Window 
Size 16) 

Total Data 
(bytes) 

36 36 613 

Meta Data 
(bytes) 

7 10 197 

Real Data 
(bytes) 

29 26 416 

Channel 
Utilization (%) 

78.38 72.22 67.86 

Comparison to 
TOS_Msg (%) 

100 89.66 84.24 



Table 2 shows channel utilization for TOS_Msg, 
and data message of LRX, and overall LRX. TOS_Msg 
has an overhead of 7 bytes, and LRX data has 3 bytes 
overhead. Inclusion of overhead of control message 
further decreases channel utilization. LRX (data only) 
is the theoretical limit of LRX (when window size is 
infinite). We can see that using LRX lowers channel 
utilization by 15%.  
 
6. Signal Processing and System Identification 

As an analog signal processing low-pass filter is 
used, which filters high frequency noise. However as 
shown in Figure 23, loss-pass filter is not perfect, 
and there exists some leftover signal above threshold 
frequency. Therefore even if low-pass filter is used, 
sampling frequency at ADC should be higher than 
threshold frequency of low-pass filter. Moreover by 
Nyquist theorem, to avoid aliasing, sampling rate 
should be at least twice of signal’s frequency. For 
accelerometer board, low-pass filter with threshold 
frequency 25Hz is used. Then ADC should sample at 
frequency much higher than 50Hz. 

As a digital signal processing, averaging is used. 
If noise follows Gaussian distribution, by averaging 
N numbers, noise decreases by a factor of sqrt(N). 
This multiplies sampling frequency by a factor of N. 
Currently averaging is optionally used for testing. 
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Filtering threshold  
Figure 23 Imperfect Loss-pass Filter 

System identification is identifying model of 
target system. By matching input to system and 
output from system, we can construct a mathematical 
system model. Usual process is fitting a general Box-
Jenkins multi-input multi-output model to sampled 
data. And natural frequencies, damping ratios and 
mode shape are then estimated using the estimated 
Box-Jenkins model. Most part of system identification 
is to be done in the future. 
 
7. Conclusion 

New challenges are analyzed which are brought 
by structure monitoring to wireless sensor network. 
High accuracy accelerometer, high frequency 
sampling with low jitter, low-pass filter, averaging, 
large-scale reliable data collection, they all were not 
critical issues in conventional application of wireless 
sensor networks. Those challenges are overcome to 

sufficient degrees, however there are still many 
problems to be solved. 

Figure 24 shows accelerometer accuracy and 
diverse challenges which will be encountered in 
pursuit of each degree of accuracy. It is 
straightforward that to achieve higher accuracy target, 
we should overcome more challenges. Those 
challenges in the figure are only a subset of already 
recognized problems. We can expect unrecognized 
problems will give additional challenges. However, 
as we can see in Figure 25, the extent of applications 
enabled also increases, as accuracy increases. 
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Figure 24 Challenges versus Accuracy 
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Figure 25 Possible Applications versus Accuracy 

 
8. Future Work 

Accelerometer should be calibrated with respect 
to temperature. Industry uses even 5 th order 
polynomial for calibration. It requires a huge amount 
of effort. This is not feasible in our case. First, 
calibration cost is too high for low cost wireless 
sensor networks. Second, computation like 5th order 
polynomial for each sample is too expensive in lese 
powerful, low cost devices. Therefore de-trending at 
server side will be a good solution. After stamping 
each data or each set of data with temperature, we 
can process later. 

Temporal jitter is handled by high frequency 
sampling component. Spatial jitter should be solved 
by time synchronization. ITP [8] is a time 
synchronization protocol widely used in Internet. In 
wireless sensor network, there were several studies. 



In RBS [9], synchronization is done among receivers, 
eliminating sender’s jitter in media access. TPSN [10] 
put time stamp after obtaining channel. This gives 
even better synchronization accuracy than RBS (10µs 
compared to 20µs). Still there is a source of jitter at 
receiver side. As we saw in jitter for sampling, 
handling interrupt by radio can be delayed by atomic 
section of other activity. As suggested in [10], putting 
time stamp at MAC layer in receiver side will 
eliminate this jitter. 

To maximize utility of channel, we need to 
monitor channel quality (loss rate), and throttle 
packet injection rate accordingly. This is very like 
media access control, just at higher level. This 
requires eavesdropping channel, and needs access to 
lower network layer breaking hierarchy. 

LRX transfers data from RAM to RAM. Using 
LRX as a building block, multi-hop data collection 
need be implemented. Exploiting linear geography of 
bridge, pipelining can be used. Multi-channel can 
distribute traffic over multiple frequency spectrum 
and increase throughput. Supernode like Stargate can 
be also used. 

As a digital signal process, digital low-pass filter 
can be used, to eliminate effect of imperfect analog 
low-pass filter. 
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