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ABSTRACT
A main challenge with developing applications for wireless
embedded systems is the lack of visibility and control dur-
ing execution of an application. In this paper, we present a
tool suite called Marionette that provides the ability to call
functions and to read or write variables on pre-compiled,
embedded programs at run-time, without requiring the pro-
grammer to add any special code to the application. This
rich interface facilitates interactive development and debug-
ging at minimal cost to the node.

Categories and Subject Descriptors
D.1 Programming Techniques, C.3 Embedded Systems

General Terms
Design, Languages, Human Factors

Keywords
Debugging, Embedded Networks, Programming, RPC

1. INTRODUCTION
Wireless embedded systems usually run batch programs,

which are downloaded to the node in their entirety, exe-
cuted, and return only the final results. Batch programming
is designed to be efficient by minimizing network and node
activity during execution. However, this opaque execution
environment makes development difficult because the pro-
grammer has no visibility into or control over application
behavior at run-time.

We propose a tool suite called Marionette that enables in-
teractive development by allowing a PC to access the func-
tions and variables of the statically-compiled program on a
wireless embedded device at run-time. Our first client im-
plementation provides the equivalent of a remote terminal to
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an embedded device: the network operator opens an inter-
preter on the PC and is presented with a set of objects repre-
senting the software modules actually running on the node.
Through these objects, the node’s functions can be called,
its variables can be read and written, and its enumerations
and data structures can be accessed. This Python-based
client can be used for interactive debugging and experimen-
tation, and can also be used to quickly script new behaviors
for the network. However, the Marionette architecture can
be used to provide access to embedded devices through any
programming environment, including Java GUIs, web ser-
vices, or even AJAX.

With the Marionette architecture, embedded applications
seamlessly span the PC and the sensor node; parts of the ap-
plication can be executed on the PC client, remotely access-
ing functions and variables on the node only when necessary.
Other parts are executed locally on the nodes. The pro-
grammer can move aspects of the application across the ma-
chine boundary to manage the trade-off between efficiency
and run-time visibility and control. When developing new
and complex functionality, it may be worthwhile to execute
mainly on the PC, where the developer can integrate rich
visualization and scientific analysis libraries into the appli-
cation and utilize more powerful debugging tools. As the
logic becomes more mature, it can migrate to the node for
efficiency reasons if necessary.

The core of Marionette is Embedded RPC (ERPC), which
uses a fat-client/thin-server architecture to allow the PC to
directly call functions on an embedded application. ERPC
is used to provide poke and peek commands, which allow any
variable on the node’s heap to be read and written. No extra
code must be written by the developer to use Marionette;
a minimal set of hooks is automatically added to a nesC
application at compile time, consuming only 153 bytes of
RAM and less than 4KB of program memory on the node.
The PC client software imports all information necessary
to access the application from an XML file, which is also
automatically generated at compile-time. This XML file is
stored directly on the node for the ability to introspect and
control a node with unknown or outdated code.

While it is difficult to quantify the degree to which Mari-
onette makes embedded application development easier, we
do show that it can reduce code size in existing applica-
tions by up to 80%. We also use several case studies to
show that it allows common tasks to be executed quickly
and easily with only a few lines of code. Finally, Marionette
has recently been demonstrated to be effective on a wireless



MyMsgs.h

struct CommandMsg {
uint8_t data;
...

};

struct ResponseMsg {
uint8_t data;
...

};

enum {
AM_COMMANDMSG = 33,
AM_RESPONSEMSG = 34

};

MyAppC.nc

components GenericComm;
...
Main.StdControl -> GenericComm;
MyApp.CommandMsg -> Comm.ReceiveMsg[AM_COMMANDMSG];
MyApp.ResponseMsg -> Comm.SendMsg[AM_RESPONSEMSG];

MyAppM.nc

uses interface ReceiveMsg as CommandMsg;
uses interface SendMsg as ResponseMsg;
...
TOSMsg msg;
CommandMsg params;
...
task callCommand(){

ResponseMsg response = call foo.bar(params.data,...)
memcpy( msg->data, response, sizeof(ResponseMsg) );
call ResponseMsg.send(TOS_BCAST_ADDR, &msg);

}

event TOS_MsgPtr CommandMsg.receive(TOS_MsgPtr m) {
memcpy( &params, m->data, sizeof(CommandMsg) );
post callCommand();
return m;

}

Figure 1: nesC code required to define a roundtrip
messaging protocol without Marionette.

testbed of over 500 nodes. The main cost of using Mari-
onette is that each interaction with a node requires network
communication.

2. DEVELOPING BATCH PROGRAMS
A network of wireless embedded devices has almost no

support for development and debugging. JTAG provides
complete debugging support for a single embedded proces-
sor, but not for a large network. Many embedded devices
can blink LEDs to relay very simple information, but not
for complex information or when more than a handful of
nodes are being debugged. Eavesdropping on network traf-
fic also provides some clues about network operations, but
is not useful for debugging internal logic and is difficult to
use in multi-hop networks when the nodes are not all within
eavesdropping range. Wireless communication is the only
channel for rich interaction with the network. However, a
surprisingly complex set of instructions must be manually
added to a program for each messaging operation. We dis-
tilled the minimal set of instructions which must be added
to a nesC and Java application to define a roundtrip mes-
sage protocol, including message formats, message handler
routines, and data marshaling and serialization. These in-
structions, outlined in Figures 1 and 2, must be replicated

Makefile

INITIAL_TARGETS = CommandMsg.java ResponseMsg.java

CommandMsg.java:
mig java MyMsgs.h CommandMsg -o $@
javac $@

ResponseMsg.java:
mig java MyMsgs.h ResponseMsg -o $@
javac $@

MyApp.java

MoteIF mote;
mote = new MoteIF(myGroupID);
mote.registerListener(new OscopeMsg(), this);

CommandMsg msg = new CommandMsg();
msg.data=100;
...
mote.send(MoteIF.TOS_BCAST_ADDR, msg);

public void messageReceived(int addr, Message msg) {
...

}

Figure 2: PC client code required to define a
roundtrip messaging protocol without Marionette.
If the user does not configure the Makefile to use
MIG, as shown, the Java application would also need
to include marshaling and serialization code.

for every function and variable that will be accessed from
the PC at run-time.

This unreasonable burden on developers has given rise to
several software tools to facilitate messaging between the
network and the PC. Tools like DiagMsg/MessageCenter,
developed at Vanderbilt University, and MIG, which comes
packaged with the nesC compiler, allow a node to marshal
data into a message and have it automatically unmarshaled
and deserialized when received at the PC. The Config and
Command tools, which are freely available in the TinyOS
code repository, automatically generate some of the code
shown in Figures 1 and 2 for accessing variables and func-
tions. However, none of these four tools provide a funda-
mentally richer abstraction; the user must still reduce all
interaction with the node to a messaging protocol by defin-
ing packet formats and message handlers for every operation
to be communicated to the node.

One software tool called SNMS [1] does provide a tighter
coupling than a simple messaging abstraction by allowing
the programmer to export a set of node “attributes” which
can be read or written by name using a Java client tool.
However, SNMS still requires new code to be written for
each exported attribute.

3. DEVELOPING WITH MARIONETTE
In contrast to batch programming in which the network

program runs autonomously, Marionette allows the devel-
oper to observe or change the state of a node at runtime,
and to compose the functions of a node application in new
ways without downloading any new code to the node. For
example, a function may be called on the node, its return
value processed on the PC, and the result passed as a pa-
rameter to another function on the node or to a function
on another node. In this way, Marionette provides a unified



programming architecture in which the network application
seamlessly spans the PC and the sensor node. This allows
rapid prototyping and experimentation of new application
logic in the context of a modern debugging and development
environment.

In this section, we illustrate the Marionette user expe-
rience through an example application called Oscilloscope,
which continually reads values from the ADC and sends
them out over the radio. This application is the “Hello
World” equivalent for sensor network applications in nesC,
and is freely available in the TinyOS code repository.

At compile time, the user must enable Marionette scripts,
which parse the application code and automatically gener-
ate a number of hooks into it. Once the compiled binary
is installed on a network, the user can open a Marionette
“terminal” into that network by specifying how to connect
to the network which, in this example, is through the se-
rial port COM1. Once the terminal is open, a single object
called app is available, through which the user can access the
Oscilloscope application installed on the nodes. As shown
here, the app variable provides access to all software mod-
ules running on the node and their functions and variables
as well as all types, enumerations, and messages defined in
the application.

~/tinyos-1.x/apps/Oscilloscope $ make install
~/tinyos-1.x/apps/Oscilloscope $ marionette.py serial@COM1
>>> app # print the contents of a nesC application

Enums : 269
Types : 81

Messages : 8
Rpc functions : 21

Ram symbols : 129
Modules : ADCM

AMStandard
BusArbitrationM
CC2420ControlM
CC2420RadioM
DrainGroupManagerM
DrainLinkEstM
DrainM
DripM
DripStateM
FramerAckM
FramerM
GroupManagerM
HPLCC2420M
HPLUSART0M
HPLUSART1M
InternalTempM
LedsC
MSP430ADC12M
MSP430DCOCalibM
OscilloscopeM
RamSymbolsM
RandomLFSR
RefVoltM
RpcM
TimerJiffyAsyncM
TimerM
UARTM
WakeupCommM

All variables of all nesC modules are available by default.
While all functions could also be made available, there is a
cost to the sensor node for each hook that is added for a
function and so the current default is to only import those
functions or interfaces that are marked with the “@rpc()“
tag. Marking functions and interfaces with this tag is the
only effort required of the user in order to use Marionette.

Software modules can be accessed as fields of app, and
functions and variables can be accessed as fields of a software
module. Functions can be called normally and do return a

value, although if there are multiple nodes in the network
they will return an array of values, one for each node. Func-
tions can also be called only on a specific node by passing an
optional address parameter. The Marionette libraries auto-
matically perform type checking on function parameters and
convert values to the native types of the embedded proces-
sor. The values of variables can be read or written through
member functions called poke and peek. Below, we use a
software module running on the node called OscilloscopeM

to view the number of readings that have been collected so
far and then use the TimerM module to read the local time
on the node.

>>> app.OscilloscopeM # print the ram symbols and functions
uint8_t : currentMsg

TOS_Msg[2] : msg
uint8_t : packetReadingNumber
uint16_t : readingNumber

result_t StdControl.init()
result_t StdControl.start()
result_t StdControl.stop()

>>> app.OscilloscopeM.readingNumber.peek() #read a variable
PeekResponse, nodeID=1:

uint16_t value : 184

>>> app.TimerM.LocalTime.read() # call a function
RpcResponse, nodeID=1:

uint32_t value : 2537364

To provide truly seamless integration with the node, the
PC also has access to all enumerations, types, structures,
and messages defined on the node, all of which are available
as fields of the app object. In this way, when enumeration
or type declarations change in the node application, they
also change on the PC and the user does not need to worry
about two separate code bases that can fall out of sync.
This architecture helps the portion of the application that
is running on the PC to deal with new fields being added to
a structure or the fact that an integer is a 16-bit value on
some platforms and a 32-bit value on others.

>>> app.enums.rpcErrorCodes # print the values of an enum
RPC_SUCCESS = 0
RPC_GARBAGE_ARGS = 1
RPC_RESPONSE_TOO_LARGE = 2
RPC_PROCEDURE_UNAVAIL = 3
RPC_SYSTEM_ERR = 4

>>> app.types.exception # print the contents of a structure
int16_t type : 0

char* name : ptr-> ’’
double arg1 : 0
double arg2 : 0

double retval : 0
int16_t err : 0

>>> app.msgs # print the available network messages
10 : OscopeMsg
32 : OscopeResetMsg

211 : RpcCommandMsg
212 : RpcResponseMsg

4 : DrainMsg
7 : DrainBeaconMsg
89 : DrainGroupRegisterMsg
3 : DripMsg

>>> app.msgs.OscopeMsg # print the contents of a message
TosMsg(am=10) OscopeMsg:
uint16_t sourceMoteID : 0

uint16_t lastSampleNumber : 0
uint16_t channel : 0

uint16_t[10] data : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]



By extending enumeration and type declarations to the
PC, Marionette facilitates several tasks that were previously
very difficult. For example, TinyOS comes packaged with a
very commonly used tool called Listen, which eavesdrops
on network traffic and prints message bytes to the screen
in hexadecimal. Below, we compare the output of the stan-
dard Java Listen program with a new Python version written
using Marionette which, in very few lines of code, uses in-
formation about the application to automatically recognize
and parse incoming messages. Here, it is parsing the ADC
readings which are being broadcast by the node running
Oscilloscope.

$ java net.tinyos.tools.Listen #execute Java Listen
7E 00 0A 0C 1A 00 00 F8 07 01 00 30 00 34 00 A4 01 58 00 35 ...
7E 00 0A 0C 1A 00 00 F8 07 01 00 30 00 34 00 A4 01 58 00 35 ...
7E 00 0A 0C 1A 00 00 02 08 01 00 DE 00 5F 00 23 03 90 03 54 ...
7E 00 0A 0C 1A 00 00 02 08 01 00 DE 00 5F 00 23 03 90 03 54 ...
7E 00 0A 0C 1A 00 00 0C 08 01 00 17 00 08 03 AD 00 AB 03 1D ...
...
$ Listen.py #execute Python Listen
TosMsg(am=10) OscopeMsg:

uint16_t sourceMoteID : 1
uint16_t lastSampleNumber : 860

uint16_t channel : 1
uint16_t[10] data : [2907, 2906, 2879, ...]

TosMsg(am=10) OscopeMsg:
uint16_t sourceMoteID : 1

uint16_t lastSampleNumber : 870
uint16_t channel : 1

uint16_t[10] data : [2906, 2895, 2866, ...]

...

In order to function, Marionette requires access to the
XML files generated from the code that is running on the
node. If the user does not have these files, they can be
downloaded wirelessly from the node itself. This provides
introspective capabilities in which a user can contact a node
with an unknown application and quickly and easily observe
its state, control it, or extend the application with new func-
tionality.

4. IMPLEMENTATION
The Marionette development environment described in

the previous section is provided by the cooperation of six
independent tools which are described in this section. At
compile-time, hooks for ERPC and poke/peek are automat-
ically added to the nesC application, and all information
necessary for a PC client to use ERPC is exported to an
XML file. After the binary has been compiled, the symbol
table is parsed and all information necessary for poke/peek
is also added to the XML file. This XML file is loaded onto
the node along with the actual code image when the node
is programmed. At run-time, the PC client tools import all
information from the XML file, first downloading it from a
node if necessary. Then, the user can send commands to
and receive responses from the nodes through the PC client
over a multi-hop routing layer, or over a wired backchan-
nel if possible. An overview of this process is provided in
Figure 3.

We call the architecture just described a fat client and
thin server architecture because as much is done on the PC
as possible to reduce the burden expected of the node. For
example, the PC client bears the full burden of serializing
network transmissions. Furthermore, by automatically gen-
erating the ERPC component and extracting the symbol

table at compile-time on the PC, we eliminate the overhead
of the node looking up functions, function parameters, or
symbols at run-time.

4.1 Embedded RPC
The core of this tool suite is Embedded Remote Proce-

dure Call (ERPC), an implementation of RPC specially de-
signed for embedded systems. RPC is a completely gen-
eral abstraction that allows procedure calls across language,
protection, and machine boundaries, a powerful abstraction
that incurs costly overhead [2]. Lightweight RPC (LRPC) is
designed to reduce the cost of RPC when used for communi-
cation across protection boundaries on a single machine, but
not across machine boundaries [3]. The design constraints
for the embedded networking domain are different still: 1)
ERPC commands need to cross machine boundaries, but not
necessarily protection boundaries; since the client and server
are in the same administrative domain, they can trust each
other, for example, with pointer values 2) the ERPC client
is generally several orders of magnitude more powerful than
the ERPC server 3) a single client may be interacting with
multiple servers, all of which will probably be programmed
in the same language. These circumstances encouraged the
following differences from traditional RPC:

• Instead of using a Network Data Representation (NDR),
all data is transmitted over the network using the na-
tive types of the ERPC server. This adds complexity
to the ERPC client, which must be able to convert
to the format of all CPU architectures that it might
interact with. However, it relieves significant burden
from the ERPC server, which no longer must perform
any serialization or deserialization.

• Instead of using an Interface Definition Language (IDL),
we parse the RPC interface directly from the source
code running on the embedded device. By not making
ERPC general across all languages, we relieve the user
from specifying the interface twice. Instead, the user
must mark each native function with a “@rpc()” tag
in the original source code and a ERPC server stub is
automatically generated and linked into the embedded
application at compile time.

• A client stub is not generated at all. Instead, the types
and RPC interface are stored in an XML file, which
can be read by a client program. The client uses this
information to marshal parameters and serialize them
into server types. This XML file is language indepen-
dent and allows the client to switch between ERPC
servers at run-time without being recompiled.

• Because of the limited resources of the server, ERPC
does not support threading or queueing of incoming
requests. It also has an optional parameter to not
send a RPC response in order to reduce unnecessary
burden on the network, especially when sending a RPC
request to all nodes in a large sensor network.

In nesC terms, the automatically-generated ERPC server
stub uses each RPC function or interface, and these are wired
to the modules that provide them. It contains a single mes-
sage handler function that determines the function that is
being called, unmarshals the function parameters, calls the



Figure 3: The structure of the application is ex-
tracted at compile time and encoded in XML. The
executable and XML file are loaded onto the node.
The pc-side tools import the application structure
from the XML file, and can interact with the node.

function, marshals the return argument, and sends the re-
sponse message. The RPC server stub constitutes the bulk
of the RAM and program memory requirements of the sen-
sor nodes by this tool suite. It requires 140 bytes of RAM
for buffering packets and about 3.6KB of program memory
in a large application. The minimal program memory re-
quirements are near 1KB, and each RPC function adds ap-
proximately 100 bytes of program memory for marshaling
and unmarshaling the function arguments.

4.2 Poke and Peek
Besides calling functions on the node, the user may also

need to get or set variables on the heap. Similar to ERPC,
we can provide this functionality such that most of the work
is performed by the PC. When the embedded application is
compiled, the name and type of each variable declaration
is extracted from the source code, and the memory address
on the heap is extracted from the symbol table of the ex-
ecutable. The name, type, and memory address of every
variable is stored in an XML file that can be read by PC
client tools.

In our system, we assume that the client and server are in
the same administrative domain, in contrast to LRPC, and
that the server can completely trust the client. In addition,
nesC does not enforce any protection boundaries between
components running on a single node. With these freedoms
in mind, Marionette includes a minimalist nesC library on
the node called RamSymbolsM that provides the ability to
read and write directly to any memory address. The read
and write commands are called poke and peek, following the
BASIC naming convention to indicate that these are direct
memory accesses and that poke may be a dangerous opera-
tion. Most of the work is done by the PC client, which reads
the variable sizes and memory addresses from the XML file
and calls the poke and peek functions on the node using the
ERPC system described earlier. Because the client knows
the type of the variable, it is responsible for indexing into

arrays, dereferencing pointers, and casting return arguments
to the appropriate type. The nesC module on the node, in
contrast, is only 60 lines of code and requires 13 bytes of
RAM and about 200 bytes of program memory.

4.3 Extracting nesC Declarations
When the embedded application is compiled, the code

is parsed for all nesC declarations that might be useful to
the PC client tools, including enumerations, constants, data
structures, typedefs, message formats, and module and in-
terface names. The names, fields and byte alignment infor-
mation of all C-structs are provided directly by the nesC
compiler using tools similar to those used for MIG. We use
Perl to parse the source code for enumeration, type, type-
def, and nesC module and interface declarations. The data
structures and enumerations are then combined to infer mes-
sage formats: following the MIG convention, an AM mes-
sage format is defined by struct StructName if an enum
with the name AM 〈StructName〉 is defined. All extracted
nesC declarations are written to an XML file called nescDe-
cls.xml, which can be read by any PC client. Extracting
this information from the application eases the burden on
the programmer, who no longer needs to repeat enumeration
definitions in the PC client tools or to manually perform
type casting or byte alignment.

4.4 PyTOS: The Python Client
The user can use a normal Python shell or script as a Mari-

onette client simply by importing our Python libraries called
PyTOS. This allows the user to access node functions and
variables through an interactive, scriptable, multi-threaded,
object-oriented programming environment, including rich
visualization and scientific analysis libraries. The core of the
PyTOS client is a parameterizable type system which reads
the XML file for an application and dynamically creates new
types in Python that are identical to the native types on the
embedded processor. This provides type checking on the PC
client tools, eg. an exception is raised if an integer-typed
variable for a 16-bit processor is assigned a value outside the
range [-32,767,32,767]. Besides the basic types, the PyTOS
typing system also supports complex types such as arrays,
pointers, and structs. Structs and arrays use the same byte
alignment used on the embedded processor, and the sizes of
pointers change based on the size of the native integer type.

The PyTOS typing system allows the PC client tools to
easily serialize and deserialize data that is communicated
with the sensor nodes. Typed variables can be used to dy-
namically construct new TosMsg objects, which are similar
to structs except that they can be serialized and deserialized
to raw bytes for sending over the network. PyTOS can au-
tomatically parse nested message structures, such as when
the MAC and routing protocols each add header bytes to a
packet. This functionality has long been needed in TinyOS.

Once PyTOS can generate variables and messages of the
same types as those used on the sensor nodes, it reads the
ERPC interface definition and makes new Python objects
with functions identical to those on the node. These func-
tions take nesC typed variables as arguments and, when
called, pack the arguments appropriately and unpack the
response messages. A similar procedure is performed for
each variable on the heap. This set of objects provide a ba-
sis for user interaction or Python scripts that use functions
and variables from the sensor nodes.



MyAppM.nc

provides interface foo @rpc();

command result_t foo.bar( uint8_t data, ... )
...
return SUCCESS;

MyApp.py

result = app.MyAppM.MyCommand( 101, ... )

Figure 4: Marionette code required to access a func-
tion on a node from the PC. This replaces all the
code shown in Figures 1 and 2

4.5 Drip and Drain
Marionette requires a transport layer to pass queries and

responses between the PC client tools and the network nodes.
It functions in two modes: local communication or multi-hop
communication. In local communication mode, the queries
and responses are both simply broadcast to and from the
base station node. In multi-hop communication, Marionette
uses two routing protocols called Drip and Drain that were
designed specifically for network management by providing
simple routing with low overhead to the node [1]. Drip uses
an epidemic protocol to reliably transmit query messages to
the entire network. If a query message is destined to only
a single node, the query message is still flooded to the en-
tire network, but only processed by the destination node.
Drain rapidly builds a spanning tree to allow all nodes to
send response messages back to the base station. This tree
remains indefinitely and must periodically be rebuilt as the
tree quality degrades over time. By not rebuilding auto-
matically, Drain may only consume resources when response
messages are expected.

These routing protocols are designed to be extremely sim-
ple in order to have a small code footprint on the node.
Because the entire network must be flooded to send a mes-
sage to only a single node, however, the number of messages
required to send a single request/response is unnecessarily
high. In ongoing work, these protocols are being extended
to allow a session to be opened with a small number of
nodes such that query messages can more efficiently be sent
to nodes with open sessions.

4.6 The Supplement
The client tools in Section 4.4 rely on the XML file that is

extracted from the embedded application at compile time,
as described in Section 4.3. Without the XML file, the de-
veloper cannot interact with the node. We have added func-
tionality to Deluge, the popular network reprogramming li-
braries [4] so that the XML file is downloaded to the node’s
external flash as a supplement to the actual code image. This
is feasible because, even for very large applications, this file
can be compressed into less than 20KB. The supplement can
be retrieved by the user in an emergency or when the XML
file has been lost, and is critical for long-term maintainabil-
ity of sensor networks in which nodes may be running old
versions of code, specialized code, or simply unknown code
images.

Oscope Rssi Calamari Peg
Funtion calls 0 3 34 5
Variable writes 1 1 42 47
Variable reads 0 0 45 47
TinyOS code 12 178 537 116
PC code 6 71 392 234

Table 1: The number of times an application re-
motely accessed functions or variables on the node,
and how much extra code was required to do this,
for four existing applications

5. EVALUATION

5.1 Code Analysis
Marionette provides an architecture that shortens the de-

velopment cycle and makes it easier to interact with and
program sensor networks. This contribution is difficult to
objectively convey, but we do quantify ease of use through
two different analyses. First, we analyze the code of existing
applications to identify 1) how often existing applications
might access functions and variables on node applications
and 2) how much code was required to do so. Second, we
present several case studies to demonstrate that common
tasks can be performed quickly and easily using Marionette’s
Python scripting interface.

In Section 2, we distilled the minimum 37 lines of code
required for each remote function or variable access. Using
Marionette, these 37 lines of code are replaced by 1 line of
code, as illustrated in Figure 4. The nesC module provides
an interface foo and defines the function foo.bar the same
way it is normally done in nesC. The user can then call
this function directly through the app variable in a python
script. The only extra code required for this functionality is
the @rpc() tag which is added to the interface declaration.
Remote access to variables does not require any extra code.

After analyzing nearly a dozen existing applications avail-
able in the TinyOS code repository, we found that applica-
tions vary significantly in how many message protocols they
define for communication between the node and the PC. The
applications that use software tools such as MIG, DiagMsg,
Config, and Command that reduce the required amount of
hand-written code necessary to perform a remote function
or variable access, as discussed in Section 2, tended to have
an order of magnitude more such accesses than applications
that do not use these tools. This demonstrates that the
amount of code required to perform remote accesses is a
real barrier to doing so. The number of remote function and
variables accesses for several applications, and the number
of lines of code required to provide them, are summarized
in Table 1.

Calamari and Peg, which are distributed localization and
tracking algorithms respectively, had the most remote ac-
cesses and used all of the tools listed above. Both appli-
cations implemented over 100 remote accesses in less than
1000 lines of hand-written code, although the amount of au-
tomatically generated code exceeds 3000 lines for both ap-
plications. Not coincidentally, these applications both have
similar properties which make development and debugging
particularly difficult: 1) they process real sensor data, mean-
ing that they must be developed and debugged on the nodes



Figure 5: This graph shows the most recent number
of messages that were forwarded by each node in a
routing tree built on a 28 node testbed.

themselves, not in a simulator 2) they perform distributed
computations in the network, meaning that they must be
developed and debugged as a network, not as a single node.

ChipconRssi is an application that commands each node
in the network in turn to send a certain number of radio
messages while all other nodes record the received signal
strength. When all messages have been sent, the applica-
tion reliably queries each node for the recorded information,
repeating requests for data that has been lost. This appli-
cation requires access to only three functions and one vari-
able, which were provided with approximately 250 lines of
hand-written code. The number of lines required can be
different from 37 when extra marshaling or serialization is
required, when a single protocol is reused for multiple pur-
poses, or when the protocol is not a complete round trip.
For example, the Oscilloscope application that we explored
in Section 3 sets only a single variable with only 18 lines of
code because it does not expect a return variable.

Reducing the amount of hand-written code needed to re-
motely access the program, however, is only part of the ben-
efit of using Marionette. For example, the total lines of
node/pc code (respectively) in the ChipconRssi application
would be reduced from 502/437 to 324/366 by simply remov-
ing overhead for remote accesses. When we re-implemented
this application in the Marionette framework, however, we
found a reduction to 279/134 lines of code instead. We also
re-implemented a reliable bulk data collection library called
Straw that was used for the structural health monitoring [5],
and saw a reduction from 515/396 total lines of code to
136/48. That is, an application of over 900 lines of code was
reduce to less than 200 lines of code. This reduction in total
application size of almost 80% illustrates that Marionette
does more than remove the need to hand write code for re-
mote access to functions and variables. By removing the
barrier between the node and the PC, it promotes simpler
application architectures.

5.2 Case Studies
Marionette does more than reduce code size, it also al-

lows the user to create new functionality for the sensor net-
work without reprogramming the nodes. In this section,
we demonstrate simple Python scripts that create network

functionality for which the nodes were not originally pro-
grammed. These examples are very simple due to space
constraints, although we do show an example in each of
three key areas: 1) network health monitoring 2) debugging
and 3) scripting new functionality.

5.2.1 Monitoring Traffic Patterns
Surge is a multi-hop data collection application in which

each node in the network reads a sensor value and routes
it back to the base station through a routing tree. In such
applications, the routing nodes near the root of the tree
may send many times more packets than the leaf nodes, and
the user may want to monitor this difference. This can be
achieved by monitoring a state variable called forwardPackets

in the DrainM software module, which keeps track of the
number of packets sent.

forwardPackets = [0 for i in range(28)]
while True:

responses = app.DrainM.forwardPackets.peek(timeout=60)
for response in responses:

forwardPackets[response.sourceAddress] = response.value
gplt.plot(forwardPackets, ’notitle with impulses’)

The script above illustrates how a user could script this
functionality in 6 lines of Python code using Marionette. Ev-
ery 60 seconds, it queries all nodes for the number of packets
forwarded so far, and updates a plot. We ran this script on
a testbed of 28 nodes and generated the graph shown in Fig-
ure 5, which shows the number of packets sent by each of
the 27 nodes in the network besides the base station. This
graph shows that the routing tree was four levels deep, and
that the two nodes in the first level forwarded almost 8 times
more packets than the 21 leaf nodes.

5.2.2 Stress Testing
Tree based routing algorithms can be very susceptible to

failing nodes, especially if those nodes are near the root of
the tree. A programmer that is designing a new routing
algorithm may want to deliberately remove nodes from the
network that are near the root of the tree in order to stress
test the algorithm. Clearly, this functionality should not be
built into the nodes themselves. Instead we present below
an 11 line script that continually plots the total number of
messages received, and repeatedly removes the node that is
closest to the root of the routing tree.

numReceived=[]
while True:

responses = app.DrainM.forwardPackets.peek(timeout=60)
numReceived.append( len(responses ))
for i in range( len( responses)):

if response[i].value > 50:
responses = app.DrainM.forwardPackets.poke(0)
app.DrainM.StdControl.stop( address=i )
print ‘‘Killed node %d’’ % i
break

gplt.plot(numReceived)

The script keeps track of the number of messages received
each minute in the numReceived array and plots this value
over time. Once every 60 seconds, the script asks all nodes
for an update of the number of forwarded packets and re-
moves the first one that has forwarded more than 50 pack-
ets. It notifies the user that a node has been removed and
updates the graph showing how many packets have been
received.



5.2.3 Motion Detector
In a recent deployment, we deployed a large number of

sensor nodes in a field with Passive Infrared sensors (PIR)
that could detect moving objects. However, it was unclear
how to convert the output of the sensors into reliable de-
tection events. In the script below, we cause the nodes to
beep every time a filtered PIR value exceeds some thresh-
old. This script could be used to quickly and easily test
for reasonable threshold values or to experiment with more
complicated filters without reprogramming the nodes.

while True:
responses = app.PIRFilter.value.peek(timeout=10)
app.SounderM.StdControl.stop( )
for i in range( len( responses )):

if response[i].value > 300:
app.SounderM.StdControl.start( address=i )

This script simply queries each node for its filtered PIR
value every fifteen seconds. If any of the nodes have a value
greater than a threshold, the node is commanded to turn on
its sounder until the next update is received.

5.3 Costs and Limitations
The most significant limitation to Marionette is the re-

quirement to remotely access a node’s functions or variables
over a wireless network. Increased traffic not only translates
to energy consumption, but can also adversely affect the be-
havior of the network algorithm that is being developed or
debugged. Furthermore, because of the unreliable network,
the Drip and Drain protocols cannot guarantee against la-
tency or loss, which may lead to unforeseen effects on the
application such as unsynchronized behavior between nodes.
While Marionette provides a full, modern development en-
vironment for the aspects of the application running on the
PC, complete debugging functionality such as break points,
variable watches, and stack traces are not possible for the
aspects running locally on the nodes. Finally, Marionette
cannot read the variable at any arbitrary point during pro-
gram execution but can only read variables in nesC’s task
context. This is not a fundamental limit of PyTOS or nesC,
but a limit of the current implementation which may be
overcome in future work.

6. DISCUSSION
To maximize efficiency during deployment, sensor nodes

do not support most development and debugging techniques.
Typically, two separate programs are executed on the PC
and the sensor nodes, loosely coupled through a messaging
interface. The sensor node provides no other programmatic
interface. This opaque, minimalist interface, however, does
not provide adequate visibility and control for practical de-
bugging and development. Marionette uses Embedded RPC
to tightly couple the executables on the PC and the node, to
the extent that parts of the sensor network application are
actually executed on the PC client, remotely accessing func-
tions and variables on the node only when necessary. This
approach consumes more bandwidth than batch program-
ming, but provides the programmer with increased visibility
and control during execution.

This approach is similar to that taken by EM*, which de-
fines an interface to the sensor node’s hardware which can
be used over a wired testbed by an application running cen-
trally on a PC [6]. With Marionette, however, this interface

is very flexible, allowing the user to choose which function-
ality runs on the PC and which runs on the sensor nodes,
while EM* defines the interface just above the hardware
level. Marionette can therefore be used on wired testbeds
like EM* or, by migrating more complex operations onto the
nodes, can also we used at an efficiency point suitable for
multi-hop, wireless networks.

In a way, Marionette is also similar to macro-programming
approaches such as TinyDB and Region Streams [7, 8], and
Virtual machines such as VM*, Mate, and SensorWare [9–
11], which similarly address the challenges of developing
sensor applications. These approaches install a number of
libraries on the sensor nodes which can be composed by
scripts that are run by a virtual execution layer on the node.
The main difference in Marionette is that this script is exe-
cuted on the PC instead of the node, which allows the user
allows the user to use any standard programming environ-
ment such as an interpreter or web interface, and all stan-
dard debugging and development techniques. A second dif-
ference with these other techniques is that Marionette hooks
into a normal application running on the node; programmer
does not need to format functions or algorithms into special
libraries in order to make them composable. This enables
an incremental type of development in which each iteration
of the node application is compiled to native code so that
the final application does not have to pay the overhead of
running through a virtual execution layer on the node.
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