
Reliable Transfer on Wireless Sensor Networks
Sukun Kim

Electrical Engineering and
Computer Sciences

University of California at Berkeley
Berkeley, California 94720

Email: binetude@eecs.berkeley.edu

Rodrigo Fonseca
Electrical Engineering and

Computer Sciences
University of California at Berkeley

Berkeley, California 94720
Email: rfonseca@eecs.berkeley.edu

David Culler
Electrical Engineering and

Computer Sciences
University of California at Berkeley

Berkeley, California 94720
Email: culler@eecs.berkeley.edu

Abstract— Many applications in Wireless Sensor Networks,
including structure monitoring, require collecting all data without
loss from nodes. End-to-end retransmission, which is used in
the Internet for reliable transport, becomes very inefficient in
Wireless Sensor Networks, since wireless communication, and
constrained resources pose new challenges. We look at factors
affecting reliability, and search for efficient combinations of the
possible options. Information redundancy like retransmission,
and erasure codes, can be used. Route fix, which tries alternative
next hop after some failures, also reduces packet loss. We
implemented and evaluated these options on a real testbed of
Berkeley Mica2Dot motes. Our experimental results show that
each option overcomes different kinds of failures. Link-level
retransmission is efficient but limited in achieving reliability.
Erasure code enables very high reliability by tolerating packet
losses. Route fix responds to link failures quickly. Previous
work had found it difficult to increase reliability past a certain
threshold. We show that the right combination of primitives can
yield more than 99% reliability with low overhead, providing
a viable alternative to end-to-end retransmission over multiple
hops.

I. INTRODUCTION

There exist many applications in Wireless Sensor Networks
requiring all data to be transmitted without loss. For example,
structure monitoring needs the entire data from all measur-
ing points to build a model and analyze it. Moreover, data
collection can be done over multi-hop network.

Challenges to achieving reliability on Wireless Sensor Net-
works can be divided to three main categories. First prob-
lems are related to the wireless communication [1], [2]. The
asymmetry of links makes link quality estimation hard and
invalidate many assumptions made in other environments.
Correlated losses due to obstacles, interference, can lead to
consecutive losses, decreasing the effectiveness of erasure
code. Weak correlation between quality and distance, hidden
terminal problems, and dynamic change of connectivity com-
plicates the situation further.

The second sort of problems comes from the constrained
resources of Wireless Sensor Networks motes. A mote is
battery powered, so has a limited power source. It also has
small computational power and memory space. Furthermore,
its communication bandwidth is narrow. Therefore we can’t
run a complicated algorithm to achieve reliability: the algo-
rithms run on motes should not send too much overhead traffic,
and should not be computationally or storage intensive.

Finally, from a software engineering standpoint, diverse
routing layers add more challenges. Since motes are resource
constrained, applications tend to make heavy use of customiza-
tion and cross-layer optimizations [3]. Therefore, there are
different routing layers customized for specific purpose: even
if we can use a general purpose, point-to-point routing for dis-
semination of information or collection of data, this approach
is very inefficient for some specific cases. For collecting data
(convergence routing), each node only needs to keep track
of which nodes are candidates for its parent. This reduces the
burden of keeping additional information to support routing to
any node. Dissemination of information, such as code image
distribution, is similar to multicast (divergence routing). In this
case, we can benefit from the broadcast nature of wireless
communication. By injecting one packet into channel, all
neighboring nodes can hear the packet. Compared to sending
packet to each single receiver, this can save a huge effort.
So there are three main routing layers categories: point-to-
point routing, convergence routing, and divergence routing.
One transport layer or one method may not work for all three
cases well. But it is not a good idea to keep three separate
versions of reliable transfer either. At least it will be desirable
to share some components if possible, wherever it might be
located in network stack. Ultimately, we seek to find common
reliability primitives or principles that can be used even in
different routing layers.

In this paper, we examine diverse options for improving re-
liability over multiple-hops, focusing mainly on point-to-point
routing. First of all, it is worthwhile looking at fundamental
factors that determe reliability. Then we look at possible
options which improve each factor. Let us simplistically look
at the following equation

number of packets received = Psuccess×number of packets sent

The goal is to increase ‘number of packets received’ suf-
ficiently so that we can get all data. Even though it is also
important which packets are received, as we will see later, the
basic limitation is delivering a sufficient amount of packets.
This in turn amounts to increasing either ‘number of packets
sent’ or increasing the probability to get through ‘Psuccess’.

Increasing the number of packets sent can be interpreted as
adding redundancy to information. One option is retransmis-
sion. End-to-end retransmission is used in TCP on the Internet

S1

S2

S3

D2

D3

D1

Fig. 1. Possible options to achieve reliability. S1 uses erasure code producing
additional code words, S2 uses thick (multiple) path which is not examined
in this work, and S3 do route fix finding alternative next hop when stuck

[4]. Link-level retransmission is used in wireless communica-
tion where loss rate of link is high. Adding redundant data is
also an option. Sending an additional parity packet for some
number of previous packets is a good example. Erasure codes
can be thought as a generalization of parity code. Rather than
sending one additional packet, erasure code can send multiple
additional packets. In parity packet case, any M out of M +1
packets will reconstruct original M data. Likewise, erasure
code enables reconstruction of M original data packets if any
M out of M + R packets are received. In Figure 1, S1 is
sending data with erasure code. We can also exploit spatial
redundancy along the path. As S2 in Figure 1, ‘thick path’
can be used as in [5]. Every node within nearby area along
the path will participate in transferring data. This method adds
in-network data redundancy.

Increasing the probability of successful delivery and chang-
ing the loss distribution can solve problems which are hard to
overcome by redundancy alone. Let us assume Psuccess is not
randomly distributed. Erasure code can survive up to R losses.
When consecutive R+1 or more packets are lost, erasure code
is unable to reconstruct the original data. This phenomenon
happens in wireless communication. For example, after a link
failure, it takes time for the routing table to be updated.
Until then, all packets sent to that link will fail, introducing
consecutive failures. In this situation, we can quickly try an
alternative next hop. This is shown as S3 in Figure 1.

In this paper, we look at link-level retransmission, erasure
code, and alternative route. Other possible options like thick
path and end-to-end retransmission remain as future work. We
examine several options on real-world testbed. We provide
results in Section VII. We then see which options and which
combinations thereof are good choices.

II. RELATED WORK

There are many algorithms proposed and implemented for
multi-hop communications in sensor networks (e.g. [2], [6]–

[12]) , and as noted these can be broadly divided in conver-
gence, divergence, and point-to-point. Our work is orthogonal
to these routing implementations, as we examine techniques
that can be employed to varying degrees in most multihop
routing schemes. In particular, we show that it is a good feature
of a routing algorithm to provide alternative next hops towards
a destination.

Previous work has been done in reliable transport for sensor
networks. PSFQ [13] examines the problem of retasking a
sensor network (an example of divergence) reliably, and make
use of hop by hop recovery with caching at intermediate nodes,
as opposed to end-to-end recovery. RMST [14] investigates
through simulation the tradeoff between having reliability im-
plemented at the MAC, transport, and application layers. Both
works conclude that hop by hop recovery is very important
for achieving reliability and that end-to-end recovery is not
adequate. They only consider different retransmission/repair
options and use simulated data. Our contribution to their
findings is the addition of the very effective options of erasure
coding and alternate route for providing reliability, as well as
the examining the interaction of these different mechanisms.
We also use real implementation of the options on a testbed of
wireless motes, which allows us to see the effect of the radio
environment on the reliability.

There exist diverse algorithms for erasure coding which can
be implemented in either software or hardware [15], [16].
[15] exploits diverse optimizations, from which this work
gained many hints. It is an excellent introduction to Reed-
Solomon codes, but focuses on the implementation in desktop
computers. We leverage many of its optimizations, carefully
choosing parameters suitable for very resource constrained
WSNs. Rateless codes [17], [18] is a class of erasure code in
which arbitrary number of code words can be produced, and is
optimized for delivery of very large amounts of data over high
bandwidth, high latency Internet links. These works are not
optimized for systems with low capability: not much attention
was paid to cases with extreme space limitation. Work in this
paper puts heavy weight on optimization for nodes with very
limited resources.

III. LINK-LEVEL RETRANSMISSION

The loss rate on wireless links is much higher than that of
wired links, and this effect accumulates quickly as the number
of hops increases. For example, when loss rate is 10% per hop,
after 15 hops loss rate becomes 80%! If a message is lost
at the nth hop, all previous n − 1 transfers become wasted
effort. To deliver the packet to nth hop again, we need n− 1
additional transfers, if all n − 1 transfers succeed. With link-
level retransmission, just one retransmission can bring packet
to the same point. For efficient use of the wireless channel,
link-level retransmission is a very attractive choice.
There are drawbacks in link-level retransmission, when used in
some specific contexts. When retransmission is implemented
with link-level acknowledgments, there is a decrease in chan-
nel utilization. This has been measured to be as high as 20%

ChannelEncoding Decoding

NM N’ M
Fig. 2. Mechanism of Erasure Code

in TinyOS.1 This overhead can, however, be mitigated in some
contexts by using techniques such as passive acknowlegments,
in which the next hop transmission is interpreted as an
acknowledgment. Another minor downside is that the middle
node needs to hold the packets in a buffer until it receives
acknowledgement from the next hop. Lastly, the delivery time
depends on the number of retransmissions along the route, so
the ent-to-end round trip time (RTT) can vary significantly.
This situation makes end-to-end retransmission inefficient.
Since we do not clearly know the RTT, an (over estimated)
upper bound needs to be used. The sender holds its buffer
for a longer time than necessary. Holding memory space for
a long time is not desirable in resource-constrained Wireless
Sensor Networks.

IV. ERASURE CODE

Another important mechanism we employ is erasure coding.
It is a scheme with which we can reconstruct m original
messages by receiving any m out of n code words (n > m). If
n is sufficiently large compared to the loss rate, we can achieve
high reliability without retransmission. Figure 2 shows high
level mechanism of erasure code. We use a particular erasure
coding algorithm, Reed-Solomon coding. Before we explain
the Reed-Solomon code, we first introduce linear codes and
Vandermonde matrices.

A. Linear Code

For the encoding process, an encoding function C(X) is
used, where X is a vector of m messages. C(X) produces a
vector of n code words (n > m). If the code has the property
that C(X) + C(Y) = C(X + Y), then it is called a linear
code. Linear codes can be represented by a matrix A, and
encoding can be represented by a matrix-vector multiplication:
the code word vector Z for message vector X is simply AX .
Decoding entails finding X such that AX = Z, for a received
code word vector Z, i.e. finding the solution to the linear
equation AX = Z. We can see that A should have m linearly
independent rows so that the linear equation has a unique

1The MAC layer in TinyOS waits 20% of a packet time before considering
the transmission successful.

1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2

1 x3 x2
3 · · · xm−1

3
...

...
...

...
...

...
...

...
1 xn−1 x2

n−1 · · · xm−1
n−1

1 xn x2
n · · · xm−1

n

Fig. 3. Vandermonde Matrix

1 x1 · · · xm−1
1

1 x2 · · · xm−1
2

1 x3 · · · xm−1
3

...
...

...
...

...
...

1 xn−1 · · · xm−1
n−1

1 xn · · · xm−1
n

w0

w1

...
wm−1

 =

p(x1)
p(x2)
p(x3)

...

...
p(xn−1)
p(xn)

Fig. 4. High level diagram showing how Reed-Solomon code works

solution, which represents a unique message vector.
This code is very useful in practice, since encoding and de-
coding are computationally inexpensive, and this is especially
so in resource-constrained Wireless Sensor Networks.

B. Vandermonde Matrix

There is one more thing we need to look at before describing
Reed-Solomon codes. A Vandermonde matrix is a matrix with
elements A(i, j) = xj−1

i , where each xi is nonzero and
distinct from each other, as shown in Figure 3. For an n by m
Vandermonde matrix (n > m), any set of m rows forms a
non-singular matrix. For whatever set with m rows we may
choose, rows in the set are linearly independent. Let’s define
for future reference this property as Property V .

Definition (Property V): For an n by m (n > m) matrix
A, if any set S of m rows of A form non-singular matrix such
that all rows in S are linearly independent, then A is said to
have Property V .

Vandermonde matrices have Property V . So we can see
that in a linear equation AX = Z, where A is a Vandermonde
matrix, any m rows and corresponding m elements of Z form
an m by m square matrix and a vector of size m, where
the matrix is non-singular. Then we can uniquely determine
X . This is a key property used in our implementation of the
Reed-Solomon code.

C. Reed-Solomon Code

The basic idea of Reed-Solomon code is to produce n
equations with m unknown variables (n > m) such that with
any m out of n equations, we can find those m unknowns.
For some given data, let us break it down into m messages
w0, w1, w2, . . . , wm−1, and construct the polynomial P (X)

using these messages as coefficients, such that

P (X) =
m−1∑
i=0

wix
i

We then evaluate this polynomial P (X) at n different points
x1, x2, , xn. P (x1), P (x2), ..., P (xn) can be represented as
multiplication of a matrix and a vector, as shown in Figure
4.
Here we can see that matrix A is a Vandermonde matrix, W is
a vector of messages, and code words are contained in a vector
AW . If we have any m rows of A and their corresponding
P (X) values, we can obtain the vector W which contains
coefficients of the polynomial, which is again the original
messages. Reed-Solomon codes can also be used to correct
errors. However, in current implementation of TinyOS, each
packet has a CRC to detect bit errors. We can assume that there
will be no bit errors in packet containing code words, as these
are dopped by the lower layers. Therefore, error correction is
not used in the implementation.

V. MODIFICATIONS FOR WIRELESS SENSOR NETWORKS

There are modifications needed to bring erasure codes to a
real world implementation, especially in resource-constrained
Wireless Sensor Networks (WSN). Several methods used to
improve efficiency in motes are heavily borrowed from [15].
We need an efficient representation of the data and efficient
and precise operations, including vector arithmetic and matrix
inversions. Fortunately, these can be made very efficient with
modular operations on finite fields and clever lookup tables,
which we discuss next.

A. Extension Fields

To make efficient use of bits in the packet, maintain preci-
sion, and reduce computational effort, we do all calculations
in an extension field with base 2. We briefly introduce fields,
and prime fields. A field [19] is any set of elements with two
operations addition and multiplication, that satisfies the field
axioms – commutativity, associativity, distributivity, identity,
and inverses – for both operations. Every nonzero element
has an inverse.

A field with a finite number of members is known as a
finite field or Galois field. For a given Galois field of size q,
if q − 1 powers of an element x (x1, x2, . . . , xq−1) produce
all non-zero elements, that element x is called a generator of
the given Galois field.
A prime field is a Galois field whose elements are integers
in [0, p − 1], where p is prime. Addition and multiplication
are normal integer addition and multiplication with modulo
operation at the end. Prime field always have a generator. The
size of prime field is p, and we need �log2(p)� bits to represent
all elements. Since p is not power of 2, there’s waste in bit
usage. For example, to represent prime field with prime 11,
we need 4 bits with which 16 numbers can be represented.
An extension field is a Galois field whose elements are integers
in [0, pr − 1]. Extension fields can be though as polynomials
on prime field(p). Operations follow the rules of polynomial

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
1 xm+1 · · · xm−1

m+1

1 xm+2 · · · xm−1
m+2

...
...

...
1 xn · · · xm−1

n

w0

w1

...
wm−1

 =

w0

w1

...
wm−1

p(xm+1)
p(xm+2)

...
p(xn)

Fig. 5. Systematic code

operation with modulo operation at the end. A primitive
polynomial is the generator of extension field. Interestingly,
this set with polynomial operations stated above still satisfies
the properties of fields. Moreover, by setting p = 2, we can
fully utilize bits in message. Property V of Vandermonde
matrices still holds for prime field, and even for extension
fields!

B. Systematic Code

When coding a message, if part of the encoded message is
the original message itself, it is possible to recover the original
message without decoding, in the event that this part arrives
intact. Codes with this property are called systematic codes.
Another good property of Vandermonde matrices is that if
any m rows of an n by m (n > m) Vandermonde matrix are
substituted with rows of the m by m identity matrix, the new
matrix still has Property V , even for extension fields. Figure
5 shows one possible case. This matrix will clearly produce a
systematic code, as m of the code words will be the original
message. When we use a systematic code in this way, at the
encoding side, we don’t need any computation for the portion
of code words containing original messages. Systematic codes
can give a benefit even when we loose some packets. At the
decoding side, the more of the original message part we have,
the closer the decoding matrix is to the identity matrix, and
the quicker the decoding process becomes.

C. Multiple Independent Code Words in a Packet

If one packet carries one code word, each code word will
be very large. This makes the implementation intractable since
operations on such a large field require huge space and time.
One solution would be to use small messages and small code
words. Then, however, the payload in a packet gets too small.
By putting multiple independent code words into a packet, we
can fully utilize payload space of a packet without problems
of large code word.
Imagine dividing one big data into t small pieces of data. Then
each data is again divided into m messages, and encoded into
n code words. We have total of tn code words to send. Pack
the ith code words from each independent k data into a single
packet. We either get all ith code words for k data, or we
get nothing. Any m packets will provide m code words for
all k data, and we can reconstruct original k data. Since all

Encoding Unit

Fig. 6. Divide packet into multiple independent code words

k data have code words with same sequence set, decoding
process is the same: the same decoding matrix can be used.
This further enhances decoding efficiency by amortizing the
matrix inversion cost over k data packets. Figure 6 shows
example. Here data is divided into 6 small data chunks. Each
data chunk is divided again to 4 messages. Messages from
each chunk are encoded to 7 code words independently. Then
code words from all data chunks with same sequence number
are packed into the same packet.
The drawback of dividing packets into multiple code words is
the contraints on the number of messages and code words. The
number of messages can not exceed the number of bits used
to represent the message. The number of code words should
be smaller than the size of extension field. For example, if
each code word is 8 bit long, maximum number of messages
is limited to 8, and maximum number of code words is limited
to 255.

D. Operation Table

Operations on extension fields are not simply addition and
multiplication combined with modulo operation. They are
polynomial operations with modulo. Therefore, rather than
performing complex computation on the fly, we use lookup
tables. Addition is simply the XOR of two numbers, and we
don’t need a table. For multiplication and division, exponent
and log values are computed and stored as tables.
Let the size of the extension field be q = pr, where p is
prime. The extension field has generators. Let one of them be
α. For any generator α, when we keep multiplying α, we can
produce all q − 1 non-zero elements of the field. And then α
is produced again starting cycle. That means that

αq mod q = α, αq−1 mod q = 1.

Let
x = αkx mod q, y = αky mod q.

Exponent and log are defined as follows

exp(kx) = x, log(x) = kx where x, kx ∈ GF (pr).

Then multiplication of xy is

xy mod q = αkxαky mod q = αkx+ky mod q

= αkx+ky mod (q−1) mod q = exp(kx + ky mod (q − 1))

= exp((log(x) + log(y)) mod (q − 1)),

and the inverse of x is

1
x

= α−kx = αq−1−kx = exp(q − 1 − kx)

= exp(q − 1 − log(x)).

Therefore, multiplication involves two log table lookups,
one addition, one modulo, and one exponent table lookup.
Inverse involves one log table lookup, one subtraction, and one
exponent table lookup, making these operations quite efficient.
The size of the tables is an important parameter when choosing
the size of the extension field: it is 2q. For current sensor
networks, this means that extension fields of size 4 or 8 are
good choices, but 16 is probably too large, as the lookup tables
will require 64K entries.

VI. ALTERNATIVE ROUTE

Adding an alternative route in the case of the failure of a
given link is yet another way to increase reliability. When a
link between two nodes fails, the messages sent through that
link will successively be dropped, until the link estimation
component is triggered and selects a new route. This process,
if prevalent, can eliminate the benefits gained from erasure
coding, since many consecutive losses will very likely to be
above the tolerance of redundancy added by erasure code. In
this case, it should be clear that link-level retransmissions are
of no great help, unless used to a prohibitively long extent.
A sensible strategy, then, is to detect the failure as soon
as possible, and send the packet to an alternative route, if
possible.

This points to the need of special support from the routing
layer for enabling alternative paths towards the destination.
This flexibility ultimately depends on the routing geometry
of the routing algorithm [20]. For example, in the case of
aggregation, in which nodes route to a parent in the tree to
the root, there may be many nodes within communication
range that decrease the distance to the root. In geographic
routing, there may also be more than one neighbor that allows
progress towards the destination. In our evaluation we use an
implementation of Beacon Vector Routing (BVR) [12]. We
describe the algorithm in some detail in Section VII, but for
now it suffices to say that it allows flexibility in the selection
of routes. We stress the point that using alternative routes is
not particular to BVR, and that our findings in this regard can
be reproduced in many other routing disciplines.
Sending packets in alternate routes can be seen as a type of
retransmission to a different node, and so in effect increases
number of packets injected to the network.

VII. EVALUATION

We implemented and evaluated the different reliability op-
tions described so far – link level retransmissions, erasure
coding, and alternative route – in the context of Beacon Vector
Routing. We birefly introduce BVR, and our results follow.

A. Beacon Vector Routing

In our experimental evaluation, we use an implementation of
Beacon Vector Routing, a point- to-point routing algorithm for
wireless sensor networks. For the purpose of our evaluation,
it is not necessary to describe the routing algorithm in much
detail, except for its aspects that provide flexibility in selecting
routes.

BVR assigns virtual coordinates to nodes, derived solely
from the network connectivity information. A subset of r
nodes is selected as “beacons”, and these beacons flood the
network at least once, so that all nodes learn their distance
to the set of beacons. The beacons act as reference points for
routing. A node p’s coordinates are then given by P(p) =
(B1p, B2p, ..., Brp), where Bip is the distance between p and
Bi. Each node in BVR is required to know its distance to each
of the beacons, and the coordinates of its one-hop neighbors.

The basic routing exported by BVR is a route-to-coordinate
interface. Routing in BVR is a form of greedy routing, similar
to the routing used in geographic routing algorithms. When
given a packet to route to a coordinate, a node selects the
neighbor whose coordinates are the closest to the destination’s
coordinates, by some distance metric. The simplest such metric
is given by Equation 1 below, and is equal to the sum of the
absolute component-wise differences of the two coordinates (a
form of an L1 metric).

δ(P(p),P(q)) =
r∑

i=1

|Bip − Biq|, (1)

This greedy-routing procedure may fail when no neighbor
makes progress in the coordinate space towards the desti-
nation. To get out of these ‘local minima’, BVR employs
a fallback routing mode that ultimately guarantees that the
destination will be reached. In fallback mode, the node for-
wards the packet towards the beacon that is closest to the
destination. This beacon is readily determined by the smallest
component of the destination’s coordinates. The minimum
distance reached by the packet is recorded in the packet; this
allows each node to resume normal greedy routing when one
of the neighbors makes progress. Eventually, a packet may
reach the beacon which is closest to the destination. In this
situation, normal greedy routing cannot be used without the
guarantee of no loops. The beacon then initiates a scoped
flood that will reach the destination. The choice of the fallback
beacon as the closest to the destination minimizes the flood
scope.

We can now explain how in BVR one can get flexibility
for choosing next hops. At each step of greedy routing, there
may be many nodes which make progress in coordinate space
to the destination. Also, when doing fallback-mode routing,

Effect of Erasure Code

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Raw Loss Rate

Fi
na

l L
os

s
R

at
e

1
2
4
8
16
64
247

Fig. 7. Increase or decrease in loss rate by using erasure code. Each line
indicates how many redundant erasure code words are added to 8 original
messages

Effect of Systematic Code

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Raw Loss Rate

Fi
na

l L
os

s
R

at
e

1
2
4
8
16
64
247

Fig. 8. Decrease in loss rate by systematic code. Each line indicates how
many redundant systematic code words are added to 8 original messages

any node that is reachable and is closer to the desirable root
is good to be used. In the BVR implementation, we fix the
maximum number of alternative routes to 6, and the routing
layer returns these alternatives ordered by progress and link
quality.

B. Erasure Code

Figure 7 shows how much reliability can be gained from
erasure code. This graph is analytically obtained assuming
loss is randomly distributed, for different redundancy levels.
The bandwidth consumed by additional code words is not
shown: more redundant code words achieve higher reliability,
but more bandwidth will be consumed also. When there is
small amount of redundancy, the loss rate is higher than raw
loss rate. This happens because when we can not decode,
we loose everything. So receiving 7 packets is effectively
same as receiving 0 packets. Systematic code is good not
only for saving computation, but also for increasing reliability.

Number of Redundant Time
Code Words (ms)

0 0.780
1 2.539
2 4.298
3 6.057
4 7.816
5 9.575
6 11.334
7 13.093
8 14.852

TABLE I

ENCODING TIME TO PRODUCE ALL CODE WORDS. LEFT COLUMN

INDICATES HOW MANY ADDITIONAL CODE WORDS ARE PRODUCED TO 8

ORIGINAL MESSAGES

Number of non-original-message Time
code words (ms)

0 0.427
1 4.027
2 6.876
3 9.820
4 13.713
5 17.119
6 21.059
7 24.604
8 27.065

TABLE II

DECODING TIME OF ALL 8 MESSAGES GIVEN HOW MANY CODE WORDS

ARE NOT ORIGINAL MESSAGES

By using a systematic code, even if we receive 7 packets,
when 3 packets are codes containing original messages, we get
3 packets. Figure 8 shows the improvement with systematic
code. The graph is also obtained analytically. The final loss
rate is always smaller than the raw loss rate. All the following
tests use systematic code. Later in this section, we examine
the trade-off between reliability and bandwidth overhead by
varying number of additional code words.

We measured the encoding and decoding speed on MICA2
motes. Messages and code words are 29 bytes long. Message
and code words are divided to 8 bit-long units, and there are
8 original messages to send.
Table I shows the encoding time. In systematic codes, the first
8 code words do not require any computation, they are just

Packet Loss Rate Time(ms)

0 0.427
0.1 3.143
0.2 5.696
0.3 8.263
0.4 10.928
0.5 13.700
0.6 16.548
0.7 19.416
0.8 22.220
0.9 24.832

TABLE III

EFFECT OF LOSS RATE ON TIME TO DECODE 8 MESSAGES

Histogram of Decoding Time

0

0.1

0.2

0.3

0.4

0.5

0.6

11 12 13 14 15 16
Decoding Time (ms)

Fr
eq

ue
nc

y

Fig. 9. Histogram of time to decode 8 messages with 4 code words containing
original messages

memory copies. Each additional code word requires 1.7ms,
which is smaller than the transmission time of a packet (20ms)
by an order of magnitude. This means that we can encode on
the fly.
Table II shows the decoding time. In systematic code, decoding
time depends on the mix of code words. The more code words
contain original messages, the quicker the decoding becomes
(Section V-B explains it in more detail). Decoding time is
roughly linear to the number of non-original-message code
words.
Table III shows the expected decoding time calculated from
Table II, given the packet loss rate. Decoding time is also
roughly proportional to the packet loss rate. Decoding takes
less than 30ms even in the worst case, and it takes 160ms to
receive the next 8 code words. So each decoding step can be
done well before the next decoding occurs, even though there
is an issue of buffering that may need to be addressed.
The mix of code words (how many code words are original
messages) determines decoding time, but given the the number
of code words containing original messages, the combination
of code words does not affect decoding time significantly. This
is shown in Figure 9. 30 random cases are produced with 4
code words containing original messages with 4 additional
code words, in total decoding 8 messages. The average de-
coding time was 13.44ms, with a 95% confidence interval of
1.52. Standard deviation was 0.74, less than 10%.

Memory usage depends on the size of encoding unit, which
is sub code word in code packet as shown in Figure 6. Most of
memory requirement comes from operation table and matrix.
With 8 bit-long unit, 512 bytes are used for operation table, 64
bytes for matrix, 232 bytes for 8 packet buffers, and 4 bytes
are used for other variables. Packet buffer will be provided
and shared by application, and operation table can be stored
in program memory. The memory usage by the erasure code
component is then 68 bytes.

C. Comparing Options

We compared different combinations of options (link-level
retransmission, alternative route, erasure code) using experi-
mental data on a real testbed. We ran the case with a maximum
of 5 link-level retransmissions, with route fix which tries up to
6 alternative routes (also with 5 maximum number of retrans-
missions per each next hop). From this data we simulated and
computed the results for other cases: 0 to 5 retransmissions
per link without route fix. We also compute the results as if the
stream of packets consisted of erasure coded packets: we label
each packet as being an original packet or a redundant packet,
and are able to infer the results of the decoding process by
labels of the received packets. Summarizing, in our evaluation
we vary two dimensions, retransmission and redundancy. We
vary the first from 0 to 5 maximum link-retransmissions with
no route fix, and 5 maximum retransmissions with route-fix.
We vary the redundancy from 0 to 8 redundant packets for
each 8 packets of data. Route fix is only for 5 maximum
retransmissions.

The testbed we use is deployed on forth floor of the
Computer Science building – Soda Hall – at the University
of California, Berkeley. It consists of 78 Mica2Dot motes, de-
ployed in graduate student offices, and is depicted in Figure 10.
Test data shown here was collected in the following way: we
let the BVR routing information in all nodes stabilize for 75
minutes, and then had an external program send 300 packets
of data from one specific node to another. We chose the nodes
so that they would be separated a significant number of hops.
Packets are separated by 1 second, which is long enough to
eliminate interference between two consecutive packets. The
pair of nodes considered is also shown in Figure 10.2 The path
we use presented an average of 5 hops across all packets that
were delivered, and the overall loss rate in the network was
26.28%. This takes into account all messages that were sent
over all links during the course of the experiment.

The metrics we use to analyze the different options are
reliability, cost, and overhead. Reliability is the percentage
of original data packets that arrive at the final destination.
It measures the actual data that two applications at both ends
can exchange successfully. Cost is the total number of packets
injected into the network in order to transmit one packet of
data. Cost includes both effect of loss rate, and the average
number of hops from source to destination. Since some options
may take a more reliable path even though it could be longer,
cost is more meaningful than packet loss rate. However, as
we shall see, cost alone also does not tell the whole story,
because in the presence of loss one may incur cost and not do
useful work. We define overhead as the cost per hop per each
successfully delivered data packet. It is normalized by dividing
by the path length, allowing us to make more meaningful
comparisons. The overhead thus measures the amount of work
done in the network (per hop), to deliver one data packet end-
to-end. Ideally it should be 1, and we should look for options

2We ran other similar experiments among other pairs of nodes with very
similar results.

Destination

Source

Fig. 10. Map of Soda hall testbed. Source and destination are also indicated.

Reliability

0

0.2

0.4

0.6

0.8

1

1.2

none 1 2 3 4 5 5+RF
Maximum number of retransmission

S
uc

ce
ss

 R
at

e

0 1 2
3 4 5
6 7 8

Fig. 11. End-to-end reliability achieved by options. Each line represents
number of redundant code words for 8 original messages. RF means route fix
is used

that maximize the reliability with the smallest overhead.
Figure 11 shows the reliability each option (link-level re-

transmission, erasure code, and route fix) achieves. The x-axis
shows the number of retransmissions and whether route fix is
used. Each curve represents how many redundant code words
were added to each 8 original messages. Figure 12 shows the
normalized overhead for each option with same x-axis and
legends.

Our first observation is that link level retransmissions should
be used in any case. With no retransmissions, the reliability is
so low that the effect of redundancy is negligible (in spite of
adding overhead, as in Figure 12). The low number (less than
30%) seen in Figure 11, is close to the expected for a five hop
transmission over links with 26.28% loss rate. When using
at most 1 per-link retransmission, not only does the success
rate go substantially up, but also does the effect of adding
redundancy increase.

Our second observation from Figure 11 is that even with
5 retransmissions and route fix, the reliability does not reach

100%. The reason for this may come from the nature of the
loss process: there can be packets which are dropped even after
5 retransmissions, because a link may have gone down, and
this information has not yet reached the routing layer or the
link estimation component. In these cases, unless some costly
measure is taken by the network, that may include holding
the packet in buffers for extended periods, or backtracking
the packet in the reverse path, it may be inevitable to drop
the packet. Erasure codes are useful in this scenario exactly
because they do not require that all packets be delivered to
recover the data, and it is safe to drop some packets that would
otherwise be too costly to deliver.

Erasure codes, however, add a fixed overhead, since redun-
dant packets are always sent at a given rate. We can see in
Figure 12 that for a given retransmission option, the overhead
always increases with the number of redundant packets. With
little redundancy added, the overhead, as shown in Figure 12,
decreases as retransmission increases. This is mostly due to the
increase in the success rate, and thus the decrease in wasted
effort to deliver packets. We can notice, however, that with
4 or more redundant packets per each 8 data packets (50%
or more redundancy added), the overhead increases with more
retransmissions, with no corresponding gain in reliability. With
high redundancy, destination already gets enough number of
code words to reconstruct original data. Additional packets
delivered by more retransmissions do not increase reliability
any more. They just add cost to the network. Also, when
maximum number of retransmissions is large and end-to-end
reliability is high, erasure code wastes too much bandwidth,
and overhead gets high.

Finally, in Figure 13 we plot, for the different options,
reliability versus overhead. These plots give insight into the
tradeoff at hand, and we caution the reader that the axis have
different roles than in previous plots. Each curve in the figure
corresponds to one retransmission option, and the nine points
in each curve correspond to the redundancy. In all curves
redundancy increases from left to right. In this graph, we
would like to choose points that have overhead close to 1,
and reliability close to 1, thus as close to the upper left
corner as possible. We can notice that adding on-demand
retransmissions increases the reliability without incurring in
overhead, at least for low redundancy cases. On the other
hand, adding redundancy, while always incurring overhead,
is needed to get the last few percent of reliability. We see that
for a given retransmission option, in order to add reliability
one has to add redundancy, but the gains are very different for
different maximum number of retransmissions.

In table IV, we pose the question of how one chooses
an option, given these trends in reliability and overhead.
As the threshold increases, sweet spot moves toward more
redundancy. And when the number of redundant code words
increases, maximum number of retransmissions drops. When
the number of redundant code words increases, more packet
losses can be tolerated, so retransmission for additional packet
delivery becomes not necessary.

Causes of failures are shown in Table V. Data is from case

Overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

none 1 2 3 4 5 5+RF
Maximum number of retransmission

N
um

be
r o

f P
ac

ke
ts

0 1 2
3 4 5
6 7 8

Fig. 12. Number of packets injected to network per hop per successfully
received data. Each line represents number of redundant code words for 8
original messages. RF means route fix is used

Threshold Retransmission Redundancy Overhead

90% 5+RF 0 1.381
95% 5+RF 0 1.381
98% 5+RF 1 1.512
99% 5+RF 1 1.512

99.9% 4 2 1.663

TABLE IV

GIVEN A THRESHOLD RELIABILITY REQUIREMENT, WHAT IS THE

RETRANSMISSION/REDUNDANCY COMBINATION THAT HAS THE

SMALLEST OVERHEAD?

with 5 maximum retransmissions and route fix, and graph is
simulation for case with 5 maximum retransmissions without
route fix. It is to show the effectiveness of route fix. ‘Reroute’
is failure without route fix, but which succeed with route fix.
‘Nowhere to send’ is failure without route fix, and also failure
with route fix: it could not send to any next hop candidates.
This failure happens when a packet can be delivered into
node, but cant be forwarded out. ‘Queue Overflow’ happens
when pending outgoing packets fill up queue, and new packet
arrives. Reroute and queue overflow are divided to independent
failure and consecutive failure. Consecutive reroute failure
indicates stale routing table value. Beacon vector routing
adapts to link failure quickly, and we did not shoot packets too
quickly in the test, so there is no stale routing table problem.
Queue overflow constitutes 80% of failure. Congestion control
needs to come in. When link-level retransmission and route
fix are used, packets tend to reside in queue longer until they
are successfully delivered to the next hop. Then it increases
chance of queue overflow. Therefore, those options may not
always increase reliability.

VIII. FUTURE WORK

This work presents an initial evaluation of several options
for achieving reliability. We leave as subsequent work further
exploration of the design space. Route fix is tested only
with 5 maximum retransmissions, which already provides high

Overhead versus Reliability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4
Overhead

R
el

ia
bi

lit
y

0
1
2
3
4
5
5+RF

8

0
2

1 2 30 4 5

1
0

1

3

8

0

Overhead versus Reliability (zoom)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

1 2 3 4Overhead

R
el

ia
bi

lit
y

1
2
3
4
5
5+RF

8

7

6

8
7

4

3

2

1

1

2
3

0

4 51

0

Fig. 13. Overhead versus reliability for different combinations of retransmission and redundancy options. Overhead is the number of packets injected per hop
per received data packet. Points in the same curve have the same retransmission option, and each curve has 9 points (indicated by numbers), corresponding
to the number of redundant packets for each 8 packets of data.

Cause Percentage

Independent Queue Overflow 2.667%
Consecutive Queue Overflow 0%

Independent Reroute 0.333%
Consecutive Reroute 0%

Nowhere to send 0.333%

TABLE V

DECOMPOSING CAUSES OF FAILURES

reliability. Even though we see marginal improvement at this
point, it surely not only improves reliability but also decreases
the overhead. It will be interesting to see case with route fix
and small maximum number of retransmissions, and compare
cost per reliability to case with no route fix and large maximum
number of retransmissions.

A direct comparison with end-to-end retransmission is miss-
ing. For very high reliability end-to-end retransmission would
be attractive solution, even though it will increase delay.

Thick path, in which messages are forwarded simultane-
ously by several nodes that make progress towards the desti-
nation is another possible option. It achieves reliability only
through information redundancy, and can survive link failure.
Moreover it has low delay to deliver packet. The downside is
that it injects a large number of packets: it is multiplication
of path length and path thickness. Since traffic is correlated
locally, channel contention will not significantly affect whole
network. However, in terms of energy consumption this would
be a bad choice. It will be interesting to see trade-off of success
rate, overhead, delay, and energy consumption.

Some form of congestion control is needed. Large chunk
transfer and admission control would be a good candidate
solution. This enables back pressure working as congestion
control without much overhead.

Initially it looked like that our implementation of erasure
codes worked as long as M + N < 2r − 1. In experiments,
when M > r it worked in most cases, but not always. Math-

ematical reasoning of this phenomenon is also left for future
work. And if we can avoid these cases without expensive
operation, it would be helpful. If we can have larger M ,
tolerating any 6 packet losses provides more robustness than
tolerating 3 packet losses from each of two transfers.

IX. CONCLUSION

Diverse options for achieving reliable transfer in wireless
sensor networks are discussed, implemented, and tested in a
real testbed. Link-level retransmission, erasure code, and route
fix are implemented and evaluated. Link-level retransmission
handles transient link failure and contention very efficiently.
Erasure code introduces static overhead, however its use
loosens the burden of delivering the last few packets (99.99%
versus 99%), which are very expensive and inefficient using
other methods. Route fix solves stale routing table problem,
providing quick adaptation to link failure, if the routing layer
provides flexibility in route selection. In turn, route fix reduces
consecutive losses, increasing usefulness of erasure code,
which does not work well with successive losses. Link-level
retransmission happens on demand: packets are retransmitted
only when necessary. Route fix is also on-demand: only when
packet can not be forwarded to next hop. Those local and
on-demand options are very efficient approaches (cost per
reliability). Erasure code allows some flexibility in the losses,
and route fix provides flexibility in selecting next hop. Some
options address some problems efficiently but not all failures,
which can be effectively cured by some other options. Our
results show that combining options would provide a sweet
spot.

X. ACKNOWLEDGMENTS

Kevin Fall gave invaluable comments on analyzing option
space. This work was supported by the Defense Advanced
Research Projects Agency (grant F33615-01-C-1895), the
National Science Foundation (grants EIA-0122599 and IIS-
033017), the Department of Energy (grant DR-03-01), the

Center for Information Technology Research in the Interest of
Society (CITRIS), Intel, Sun Microsystems, Hewlett Packard,
and Microsoft.

REFERENCES

[1] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proceedings of the First Interna-
tional Conference on Embedded Network Sensor Systems, 2003.

[2] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” ACM Sensys, November
2003.

[3] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The emergence of networking abstractions
and techniques in tinyos,” In Proceedings of the First USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI
2004), 2004.

[4] V. Jacobson and M. J. Karels, “Congestion avoidance and control,” in In
Proceedings of the Sigcomm ’88 Symposium, Stanford, CA, Aug. 1988.

[5] M. Maroti, “Directed flood-routing framework,” ISIS, Vanderbuilt Uni-
versity, Tech. Rep. ISIS-04-502, 2004.

[6] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-regulating
algorithm for code maintenance and propagation in wireless sensor
networks,” in First USENIX/ACM Symposium on Network Systems
Design and Implementation (NSDI), 2004.

[7] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proceedings of the 2nd
ACM Conf. on Embedded Networked Sensor Systems (SenSys’04), 2004,
to appear.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny AGgregation Service for Ad-Hoc Sensor Networks,” in Proceedings
of the ACM Symposium on Operating System Design and Implementation
(OSDI), Dec. 2002.

[9] D. Ganesan, “TinyDiffusion Application Programmer’s Interface API
0.1,” http://www.isi.edu/scadds/papers/tinydiffusion-v0.1.pdf.

[10] M. D. Yarvis, W. S. Conner, L. Krishnamurthy, A. Mainwaring,
J. Chhabra, , and B. Elliott, “Real-world experiences with an interactive
ad hoc sensor network,” in Proceedings of the International Conference
on Parallel Processing Workshop, 2002.

[11] Y. Kim, R. Govindan, B. Karp, , and S. Shenker, “Practical and robust
geographic routing in wireless networks,” Under submission.

[12] R. Fonesca, D. Culler, S. Ratnasamy, S. Shenker, and I. Stoica, “Beacon
vector routing: Scalable point-to-point routing in wireless sensornets,”
In submission.

[13] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy, “Psfq: a reliable
transport protocol for wireless sensor networks,” in Proc. of the 1st ACM
international workshop on Wireless sensor networks and applications.
ACM Press, 2002.

[14] F. Stann and J. Heidemann, “Rmst: Reliable data transport in sensor
networks,” in Proceedings of the First International Workshop on Sensor
Net Protocols and Applications. IEEE, April 2003, pp. 102–112.

[15] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Computer Communication Review, vol. 27, no. 2, pp.
24–36, April 1997.

[16] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-
erman, “An xor-based erasure-resilient coding scheme,” International
Computer Science Institute, Tech. Rep. TR-95-048, 1995.

[17] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” in Proceedings
of the ACM SIGCOMM ’98. ACM Press, 1998.

[18] P. Maymounkov, “Online codes,” NYU, Technical Report TR2002-833,
November 2002.

[19] “http://mathworld.wolfram.com/.”
[20] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica, “The impact of dht routing geometry on resilience and
proximity,” ACM SIGCOMM, August 2003.

