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Abstract

Wireless Sensor Networks for Structural Health Monitoring

by

Sukun Kim

Master of Science in Computer Science

University of California at Berkeley

Professor David E. Culler, Research Advisor

A structural health monitoring system is designed, implemented, and tested using Wireless

Sensor Networks (WSN). The project is targeting a deployment on the Golden Gate Bridge.

Ambient vibration of the structure is monitored and is used to determine the health status

of the structure. With WSN, low cost monitoring is possible without interfering with the

operation of the structure.

To capture minute signals, a new accelerometer board is designed and the system is carefully

calibrated against tilt and temperature. Signal processing is used to increase the quality

of the sample. Sampling jitter is analyzed, and it is minimized. To collect data reliably, a

bidirectional antenna provides longer connectivity, and a reliable data collection component

achieves reliability with little overhead. Deployment at a footbridge showed the system is

operating successfully, and the collected data matched theoretical expectation.

This work shows that WSN is capable of new applications at the opposite end of the appli-

cation spectrum from conventional applications: high-fidelity, high-volume data sampling

and collection.
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Chapter 1

Introduction

Wireless sensor networks (WSN) enable many monitoring applications. Habitat

monitoring at Great Duck Island [26] is an example. Wireless sensor networks monitor the

microclimates in and around nesting burrows used by the Leach’s Storm Petrel. Their goal

is to develop a habitat monitoring kit that enables researchers worldwide to engage in the

non-intrusive and non-disruptive monitoring of sensitive wildlife and habitats. Deployment

in the Redwood forest is also a good example. A WSN is deployed on redwood trees, and

environmental data around the tree is gathered. These typical usages of WSN are for cases

with low data rate, small data size, low duty cycle, and extreme emphasis on low power

consumption.

There is a different class of applications at the opposite end of application spectrum. Struc-

tural health monitoring of buildings, bridges and other structures requires high data rate,

large data size, and a relatively high duty cycle. In this class, the focus is more on high

fidelity of data, and aggressive sampling and collection rather than low power consumption.

This work is targeting the Golden Gate Bridge, but most of parts are applicable to struc-

tural health monitoring in general. First, structural health monitoring will be introduced,

in general. Benefits in using WSN will be discussed. Then, we will see what is required for

structural health monitoring, and challenges to WSN. At last, a high level overview of our
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solution will be provided.

1.1 Structural Health Monitoring

We will look at structural health monitoring (SHM) in more detail. Structural

health monitoring is estimating the state of structural health, or detecting the changes

in structure that effect its performance. Two major factors are time-scale of change and

severity of change. Time-scale is how quickly the change occurs, and severity is the degree

of change. Two major categories of SHM are disaster response (earthquake, explosion,

etc.) and continuous health monitoring (ambient vibrations, wind, etc.). This work is

focused on continuous health monitoring. There are two SHM approaches: direct damage

detection(visual inspection, x-ray, etc.) and indirect damage detection (change in structural

properties/behavior). We use indirect detection, especially through vibration.

1.2 Benefits from using Wireless Sensor Networks

Structural health monitoring itself is not a new concept. The conventional method

uses PCs wired to piezoelectric accelerometers [23]. However, this method has drawbacks

in that (1) wires have to run all over the structure, so this method may disturb the normal

operation of the structure, (2) the cost of equipment is high, (3) installation is very expensive

due to wiring, and (4) its maintenance is also expensive. Compared to the conventional

method, WSN provides the same functionality at a much lower price which permits much

denser monitoring.

First let us look at the cost of hardware. A conventional system with a PC and piezoelectric

accelerometers is used as a reference. It costs $40,000 per sampling point. Our system costs

$600 per point. In WSN, wiring is not needed, so installation and maintenance are easy

and inexpensive. Moreover, WSN affect the operation of the structure less.

The advantage of WSN based structural health monitoring can be amplified by MEMS
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accelerometers. Since the MEMS accelerometer is a silicon chip, it is very compact in size,

consumes little energy, and is inexpensive. Without MEMS accelerometer, WSN’s small

size, low power and low cost will be degraded.

1.3 Challenges to Wireless Sensor Networks

For structural health monitoring, we need to read acceleration signals down to

500µG (1G is the gravity) [12], at a frequency higher than 1KHz synchronously at all

nodes. And we need all data.

In addition to these real-time, high fidelity performance requirements, there are other ones.

Monitoring needs be economical. The cost includes the system itself, installation, and

maintenance. We do not want to disturb the structure being monitored, and introduce no

hazards.

The requirements of structural health monitoring can be challenging to WSN.

• High accuracy of sample: It means the final reading needs to detect signals down

to 500µG without significant distortion. Sources of distortion include the noise floor

of the system (including accelerometer, amplifier, analog to digital converter, etc),

installation error, and temperature variation.

• High-frequency sampling: This implies low jitter. Jitter is a variation in sampling

intervals.

• Time synchronization: Sampling needs to start at the same time on all nodes

although the sampling should be done over multiple nodes across the entire network.

Furthermore, this needs be doen in spite of differences in drift of each clock. Otherwise,

shifts in signals between different nodes can give a distorted picture of the structure.

• Large-scale Multi-hop network: In case the structure spans a long distance (e.g.

1 mile) like a bridge, it is impossible to cover the entire structure with single hop com-
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munication. So a large-scale multi-hop network is necessary to provide connectivity.

• Reliable command dissemination: If we fail to start some nodes, we will miss

data for those points. Then we will have an imperfect picture of the bridge, which

makes analysis very difficult or impossible.

• Reliable data collection: Not only commands, but also data needs to be transferred

reliably. Missing samples make the analysis hard or even impossible.

Conventionally, the usage of WSN has been focused on low duty cycle, low data rate,

moderately loss-tolerant sampling. Structural health monitoring is at the other end of

application spectrum, and has different requirements. With less concern about energy, it

needs high duty cycle, high frequency high-fidelity sampling, and reliable collection of large

amount of data. These challenges are new to WSN.

1.4 Overview of Solution

Figure 1.1 shows high-level overview of the system. Operation can be decomposed

into three phases.

• Data sampling: sample the vibration data of the structure, and logs it into EEP-

ROM.

• Data collection: transfers data reliably to an external computing resource.

• Data Analysis: runs analysis algorithm, and determines health status. Sends feed-

back to nodes if needed.

The system can also be decomposed into its structural pieces. This paper is structured

according to the components of the system. The system can be decomposed into three

pieces: hardware, software on the node, and analysis software on a central computer. The

following three chapters will cover these three components. Hardware issues including mote,
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1. Data Acquisition

2. Data Collection

3. Data Processing & Feedback

Figure 1.1: High-level Overview of the System

accelerometer board, antenna and power will be presented in Chapter 2. Software structure,

data sampling software and data collection software are covered in Chapter 3.

Then data analysis method is described in Chapter 4, and results from real world deploy-

ments will be shown in Chapter 5. Related work, and conclusions will follow in Chapters 6

and 7.
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Chapter 2

Hardware

This chapter explains hardware issues in more detail. Figure 2.1 shows an overview

of the hardware as a blcok diagram. Accelerometer board has sensors and signal processors

(low-pass filter, analog to digital converter). A mote stores data from the accelerometer

boards, and later sends the data through an antenna. Mote, accelerometer, antenna and

power issues will be discussed. For each component, the problem statement, solution and

evaluation will be presented within each section.

2.1 Mote

The mote drives the accelerometer board, stores data, and communicates data.

The Mica2 [11] is used for this work. The Mica2 is shown in Figure 2.2. The main

components of ths mote are the microcontroller, radio chip, and external data storage. The

microcontroller is ATmel ATmega 128L. It has 128KB of program memory, 4KB of RAM,

and runs at 8MHz. The radio chip is the Chipcon CC1000. Its data rate is 38.4Kbaud. We

used a version of Mica2 with a radio frequency of 433MHz. The Mica2 also has an external

512KB EEPROM for data storage.
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Accelerometer ADCLow-pass Filter

Accelerometer ADCLow-pass Filter

Accelerometer ADCLow-pass Filter

Accelerometer ADCLow-pass Filter

Thermometer

Mote

Accelerometer Board

Antenna

Figure 2.1: Hardware Block Diagram

Figure 2.2: Mica2
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Figure 2.3: Accelerometer Board

2.2 Accelerometer Board

A new accelerometer board is designed for structural health monitoring. It has

very accurate accelerometers and a thermometer to calibrate them. It is shown in Figure

2.3, and its schematics is in Appendix A.

2.2.1 Accelerometers

Two quite different sources of vibration (earthquake and ambient) are monitored

using a single board. So the accelerometer board has two kinds of accelerometers: ADXL

202E and Silicon Designs 1221L. Table 2.1 shows characteristics of each accelerometer part

(range and system noise floor shows the performance in combination with the entire system).

The accelerometer board contains one of ADXL 202E, and two of Silicon Designs 1221L, and

four of 16 bit analog to digital converters (ADC). On the span of the bridge, we planned to

measure acceleration in two directions perpendicular to the bridge span: one up-down, one
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Table 2.1: Two Accelerometers

ADXL 202E Silicon Designs 1221L

Type MEMS MEMS

Number of axis 2 1

Range of System -2G to 2G -0.1G to 0.1G

System noise floor 200(G/
√

Hz) 30(G/
√

Hz)

Price $10 $150

across the span. The bridge span does not move much parallel to the span, and its signal is

not interesting. And for the tower, we measure two directions parallel to the ground: along

the span and across the span. The tower does not have much movement in a direction

vertical to the ground. Acceleration is measured both by the ADXL 202E and Silicon

Designs 1221L. Since the ADXL 202E has two accelerometers in directions perpendicular

to each other, one ADXL 202E chip captures both directions. The Silicon Designs 1221L

has one axis, so two of them are used. Thus, there are four accelerometer channels in total.

The ADXL 202E channels have a range from -2G to 2G, to capture big movements like

an earthquake. The Silicon Designs 1221L has a narrower range (from -0.1G to 0.1G) to

sample subtle signals like ambient vibration. The vertical channel of the Silicon Designs

1221L has a 1G offset to compensate for gravity.

2.2.2 Noise Floor Test and Dynamic Test

To see static characteristic of accelerometers, the accelerometer board was put in

a quiet vault, which is isolated from outside vibration and sound with constant tempera-

ture. The vault is located in Lawrence Berkeley National Laboratory, and is used to detect

earthquakes and nuclear weapon development. Figure 2.4 shows how quiet the inside of

the vault is (solid line) compared to normal office environment (small dashed line). And it

also shows a reference reading from a very sophisticated accelerometer in the vault, which
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Figure 2.4: Noise Level at Various Places



11

0 2 4 6 8 10 12

x 105

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
Time plot, Test 1 (McCone Hall) vs. Test 2 (Vault), Quiet Environment

Sample Number

A
cc

el
er

at
io

n 
(g

)

Figure 2.5: Time Series Data of Vault Test

is used for seismic research (large dashed line). The system with Silicon Designs 1221L

has a noise level over 20dB higher. Figure 2.5 shows the time plot of acceleration in the

vault and office environments for a 30 minute period. The data is not calibrated against

the temperature. The lower line shows noise in a normal office environment. We can see

noise from machines, which is also visible in Figure 2.4. The upper line shows acceleration

readings from the vault. Drift is observed in this case. On the test day, it was rainy and

cold outside, and it was warm at the inside of the vault. We put the accelerometer in the

vault, and immediately started sampling. So the accelerometer board experienced a drastic

change in temperature. The drift is almost 10mG, which is significant compared to the

noise floor, and sensitivity. More discussions on temperature will follow later.

To see the dynamic behavior of accelerometers, we performed a shaking table

test with constant temperature. Even though the test site was not completely free from

vibration and sound noise, it was quiet enough for the dynamic range of the shaking table
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Figure 2.6: Shake Table Test (0.5Hz), ADXL 202E
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Figure 2.7: Shake Table Test (0.5Hz), SD 1221L
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Figure 2.8: Shake Table Test (Increasing Frequency with Same Displacement), ADXL 202E

to dominate noise. Results are shown in Figures 2.6, 2.7. Figure 2.6 is the result of ADXL

202E, Figure 2.7 is the result of Silicon Designs 1221L, and the driving frequency is 0.5Hz.

Data are read from both channels at the same time. We can see Silicon Designs 1221L has

less vibration noise in a static situation (when there is no movement). Figures 2.8, 2.9 show

another experiment on the shaking table. Here the frequency increases while displacement

remains constant. When the amplitute of the movement gets large, signals from the Silicon

Designs 1221L has its peaks clipped. It seems like Silicon Designs 1221L has larger damping

factor than ADXL 202E, so that sharp surges at peaks are damped.

2.2.3 Tilting Calibration

There exist variations in accelerometers, analog filter components, ADCs, etc.

Therefore, we need to calibrate the acceleration measurement system (not only the ac-

celerometer) to correctly convert data to acceleration. A tilting test measures data at

various angle points and matches the angle and the data actually read. Thanks to gravity,
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Figure 2.9: Shake Table Test (Increasing Frequency with Same Displacement), SD 1221L

we can create arbitrary accelerations from -1G to 1G. Through this test we can measure

the offset and the gain of the system for each node.

We used the tilting calibration equipment YUASA as shown in Figure 2.10. YUASA auto-

matically changes angle. The accuracy of the angle is within 0.0005 degree which is 8.73µG

near 0 degree and 0.0381nG near 90 degree. The mote continuously sends data. LabView

[8] is running on the PC, and reads an angle from the YUASA and reads measured data

in data packets from the mote. Then it stores them as a table to a file. A sample of data

is shown in Figure 2.11. The top figure is time series of accelerometer readings from all

channels. Other figures below show real angles versus accelerometer readings. As can be

seen in the figures, the reading shows normal distribution, and its average is very linear to

acceleration.
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Figure 2.10: YUASA used for Tilting Test

Figure 2.11: Sample Result of Tilting Test
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Figure 2.12: Time Series of Temperature

2.2.4 Temperature Calibration

Accelerometers are very sensitive to temperature change. The bridge is exposed

to significant variation in the temperature. Temperature can change up to 45oF within a

day. From our calibration measurements this can shift the signal by 40mG in a sensitive

channel. Recall we are looking at very subtle signal, sometimes down to 500µG. The signal

to noise ratio in this particular case is 1.25%, which means signal is totally dominated by

noise from temperature variation. Therefore, we need to calibrate the acceleration data

against temperature. The accelerometer board contains a temperature sensor: Microchip

TC77, which is used for calibration.

We performed temperature a calibration test to see how well accelerometers can be

calibrated against temperature using the external thermometer on the board (Microchip

TC77). We first put the accelerometer board into an oven, changed temperature, and

associated temperature and accelerometer data. Figure 2.12 shows temperature change

over time, and Figure 2.13 shows acceleration change. The SD 1221L horizontal channel
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Figure 2.15: Estimated Parameters for Linear Regression

is shown, which suffers the most significant effect from temperature. The combined result

is shown in Figure 2.14 (acceleration versus temperature). Results for the vertical channel

and results for the ADXL 202E are very similar, except for the amplitude of change in

acceleration.

We tried a linear regression model. A window of length 199 samples is considered and a

linear regression model of the form

(Acceleration) = (RawAcceleration) + a + b ∗ (Temperature) + e

is fit to that windowed segment of the data.

The Figure 2.15 shows plots of the estimated parameters for data shown in Figure 2.14

(SD 1221L horizontal channel). The parameters include a and b (as defined above) and the

standard deviation of e, the error term in the regression model. There are strange peaks.

They occur when the direction of temperature change reverses: from up to down, or from

down to up.
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Figure 2.16: Deployment Plan for the Golden Gate Bridge

This test raises a new concern: hysteresis. The thermometer responds slower than ac-

celerometer. We can’t get rid of temperature effect simply by linear regression. However,

considering the enormous rate of temperature change (1 degree Celsius per minute) in the

test, estimated standard deviation of 3mG is quite good. We are investigating how signif-

icant this effect will be in a bridge environment. And we can also use the thermometer

inside the accelerometer chip to avoid possible hysteresis.

2.3 Antenna

This project is ultimately targeting Golden Gate Bridge. Figure 2.16 shows the

deployment plan. The longest hop is 280 ft. With a wire whip antenna, communication

success rate is too low at this distance. Therefore, we looked at other antenna options

to provide connectivity. Omnidirectional antennas are poorly suited to this application,

instead we want a bidirectional antenna. This situation is not uncommon in structure
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Figure 2.17: Bidirectional Patch Antennas

monitoring. Covering big bridges and buildings is not possible with bulky whip antenna.

A patch antenna is reasonably small in size and increases range moderately orthogonal to

the patch. However, there is a limitation for availability. Only a 2.4GHz product exists for

this type of antenna, which are designed for WLAN operating at 2.4GHz. This means our

target mote Mica2 is not compatible with the antenna. One possibility is to use the the

MicaZ platform. The MicaZ is the same as the Mica2 except that it uses a standard IEEE

802.15.4 radio running at 2.4GHz.

We tested bidirectional patch antennas manufactured by Superpass [9], as shown in Figure

2.17. Figure 2.18 shows the installation on the Golden Gate Bridge. The installation is the

same as the planned real installation on the bridge. A MicaZ was used for the test (just for

the radio test, not for sampling the vibration data). A 9 dBi bidirectional patch is used for

both side of communication. Radio power is set to maximum. At 150ft, packet success rate

is 99.5%. At 200ft, success rate is 62.0%, which is prohibitively low. Adding a repeater will



21

Figure 2.18: Antenna Installation on the Golden Gate Bridge
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Situation Consumption (mA)

Board Only 26.7

Idle 39.8

One LED On 42.6

Erasing Flash 74.7

Sampling 39.8

Transferring Data 43.2

Table 2.2: Power Consumption in Various Operational Situations (9V)

increase the success rate, but adding more hops increases collection time. A larger antenna

could be used instead. But a large antenna may not fit into the small space for installation.

More analysis on repeaters is future work.

2.4 Power

It is not always possible to have wired power at the deployment. Even if possible,

the cost overwhelms its benefit. In a bridge environment, this is a problem. So the system

needs to rely on a battery as a power source. We analyzed whether the design meets our

desired length of deployment, and how much it would cost for the system to last as long as

we desire.

Table 2.2 shows a power consumption profile of the system, which includes an accelerometer

board and a mote. We can notice that the power consumption of the board itself is very

high compared to that of the mote. The left side of Figure 2.19 shows the reason. Power

is directly connected to the mote, sensor, and ADC. To run the mote, all other hardware

components have to be powered on. The right side of Figure 2.19 shows a proposal for

lower energy consumption. Only the mote is directly connected to the battery, and all other

components can be powered off by mote. This will significantly cut power consumption by
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Figure 2.19: (Left) Current Board Design, (Right) Board Design Proposal

powering the accelerometer board only in the sampling phase.

To estimate how much energy is needed for a 3 week deployment, we assumed an operational

model. The mote transfers data one third of a time, and stays in the idle state otherwise.

Since sampling is short, and its power consumption is very close to that of idle state,

sampling mode is not considered. We found a high-capacity lithium battery: the Tadiran

5930 [10] supplies 3.6V and contains 19Ah in a D size package. It costs $17 each. With 3

of these Tadiran 5930, the system will lasts 23 days, good enough for a 3 week deployment.
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Chapter 3

Software Architecture

As an underlying software infrastructure, TinyOS [16] is used. TinyOS is an

operating system developed in UC Berkeley. It is a de facto standard operating system in

WSN. In this chapter, our findings and newly added components will be introduced.

3.1 Overall Structure

Figure 3.1 shows the overall structure of software. Structure Monitoring Toolkit

(SMT) is an application layer program, which drives all components. On top of best-effort

one-hop communication, broadcast is used for command dissemination, and MintRoute [27]

is used for information reply. MintRout provides best-effort multi-hop convergence routing.

Reliable data collection layer lies above broadcast and MintRout. SMT uses them all:

broadcast, MintRout, reliable data collection. For time synchronization, FTSP [22] is used.

BufferedLog [5] is used to support high frequency sampling.

3.2 Data Sampling

As presented in Chapter 1, there were 6 challenges. High accuracy of sample,

high-frequency sampling, and time synchronization are related to data sampling. From
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GenericComm (best-effort one-hop communication)

Broadcast Mint (multi-hop convergence routing)
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Time
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Figure 3.1: Overall Software Architecture

software’s point of view, high accuracy of sample is a topic related to averaging as a signal

processing step, which will be covered in Chapter 4, Data Analysis. Time synchronization

is provided using FTSP. So high-frequency sampling will be mainly discussed here.

3.2.1 High Frequency Sampling

The fundamental frequencies of most structures are below 10Hz (A structure with

higher fundamental frequencies would be too stiff). However by Nyquist theorem, sampling

rate should be at least twice of that. Moreover, to reduce effect of noise, averaging is used

(more details will be explained in Chapter 4), and the sampling rate should be multiplied

by the number of samples averaged. All these factors increase the sampling rate close to

KHz level. Structure monitoring requires regular sampling with uniform interval, and jitter

becomes a critical problem as sampling rate gets higher.

There are two kinds of sources to jitter, and they are shown in Figure 3.2. Temporal jitter
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Figure 3.2: Source of Jitter

occurs inside a node, because actual sampling does not occur at a uniform interval. So even

with only one node, temporal jitter happens. Spatial jitter between different nodes happens

because of variation in hardware, and imperfect time synchronization. Even if two nodes

agree to sample at time T, this T occurs at different absolute times for those two nodes.

Spatial jitter occurs only when there are more than one node.

We assumed sampling frequency does not go beyond 200Hz, and 5% of total jitter (250µs)

across system is assumed to be acceptable. Actually the tolerance of algorithm to jitter

is not very well understoold. 5% is a conservative speculation. Time synchronization

component FTSP provides 67µs error over 59-node 11-hop network [22], so spatial jitter is

not a problem. The temporal jitter will be smaller than the spatial jitter, because causes of

the spatial jitter include all the causes for the temporal jitter. However, when a sampling

starts, more activities occur and more sources of jitter become active. Therefore, temporal

jitter at this point can be worse than spatial jitter without sampling activity. Therefore,
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Figure 3.3: Occurrence of Jitter

here temporal jitter is considered.

3.2.2 Jitter Analysis

Figure 3.3 shows interaction of sampling and other jobs such as writing data from

RAM to flash. Timer event for sampling occurs regularly with a uniform interval. However,

to be serviced by the CPU, the CPU should finish servicing pending atomic section. Only

then, can the CPU handle timer event and sampling. Polling is used in driving ADC.

Therefore, the moment timer event occurs, sampling happens capturing the most recent

sample.

Assume only up to one event can reside in the task queue when a timer event occurs

(this assumption will be explained in the next subsection). Let N be the number of atomic

sections. And C be the context switch time when timer event occurs while CPU is executing

preemptible section. We assume that C is constant regardless of the portion of code running.



28

C0 C0 C0 WTi Ti Ti

Jitter Jitter Jitter

Probability Probability Probability

Pi/Ti

Figure 3.4: (Left) One Atomic Section, (Middle) Multiple Atomic Sections, (Right) Multiple
Atomic Sections with CPU Sleep

And let Ti be the length of atomic section i. And Pi be the probability of atomic section i

running on CPU when a timer event occurs. Let X(i) be a random variable which is the

remaining execution time of atomic section i running on CPU when a timer event happens.

We assume X(i) is uniformly distributed from 0 to Ti.

First, assume N = 1. Left figure of Figure 3.4 shows distribution of jitter. Peak at 0 is the

case where there is nothing running on CPU when a timer event occurs. Peak at C is the

case where preemptible code is running when a timer event occurs. And above C, there is

a case where atomic section i is running on CPU when a timer event occurs.

Middle figure of Figure 3.4 shows a general case where N > 1. Right figure of Figure 3.4

incorporates the effect of CPU sleep. When there is nothing running on CPU, CPU goes

to sleep mode. Let W be the wakeup time. Then peak at 0 moves to W . In reality, entire

graph moves left by C, because consistent jitter of C can be removed.
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Figure 3.5: Time Series of Jitter at 1KHz

3.2.3 Removing Jitter

For high-frequency timer event, MicroTimer [1] is used instead of Timer [6] com-

ponent. Timer component of TinyOS triggers at only up to 200Hz. MicroTimer supports

only a single timer, but can trigger at up to several KHz. For light-weight EEPROM writing

at high frequency, BufferedLog component is used.

From the jitter analysis in the previous subsection, we can see that the worst jitter is de-

termined by the longest atomic section which can be running when the timer event occurs.

This implies that we better give no chance for unnecessary components’ atomic section to

run on CPU. Therefore, we turn off every component except EEPROM during sampling.

Then the assumption in the previous section holds, which says there can be only up to one

atomic section running in when a timer event occurs. So jitter model is valid.

Figure 3.5, 3.6 and 3.7 show time series of jitter. Here is how it is measured.

Hardware time is read when the timer event is switched onto the CPU. Since we know

when sampling started and how many hardware ticks are equivalent to the interval, we
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Figure 3.6: Time Series of Jitter at 5KHz
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Figure 3.8: Histogram of Jitter at 1KHz

can calculate the jitter. There are two sections: plain section, spiky section, even though

at 6.67KHz this separation is not clear. Let us define one epoch be a period of time to

fill up a RAM buffer. These two sections constitute one epoch. During spiky period, the

buffer is written to flash memory as a background task. At 1KHz, only a small portion of

sampling is affected by flash memory write. At 6.67KHz, flash memory write affects too

many sampling: most of sampling are affected by flash memory write. Looking at 5KHz

case, even at 6.67KHz flash memory write should not affect that many sampling. However,

the overhead of sampling itself seems to have some effect.

There is another interesting thing. At the plain section, there is a constant delay for every

sampling. This delay is the wake up time of the CPU. When the CPU is idle, it enters a

sleeping mode. And it takes 4 cycles to recover. Since there is a function call to record

time, actually it takes 5 cycles here. Since the CPU runs at 8MHz, this wakeup time is

equal to 625ns.

Figure 3.8, 3.9 and 3.10 show the distribution of jitter values (histogram). We can see a

peak at 625ns, which is a wakeup time W . Except this peak, the frequency of jitter is largest
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Figure 3.9: Histogram of Jitter at 5KHz

-1 0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000
Interval: 150ms

Jitter (us)

S
am

pl
e

10µs0µs

Figure 3.10: Histogram of Jitter at 6.67KHz



33

near 0s, and gradually decreases as jitter value increases. This result from real experiments

matches quite well with the theoretical model. And jitter values are within 10µs.

3.3 Data Collection

Among the six challenges in Chapter 1, large-scale multi-hop network, reliable

command dissemination and reliable data collection fall into data collection. Large-scale

multi-hop network is provided by MintRout. Reliable command dissemination is achieved

by retransmission. Here reliable data collection will be discussed.

Structural health monitoring and machine monitoring require all data from every

node. Incomplete data set makes analysis extremely difficult or impossible. And many more

applications need all the data.

It is desirable to pursue reliability at the minimal expense of other properties. Sacrificing

channel capacity is not affordable. It is desirable for data collection to scale over multi-hop

network. We also want bandwidth to remain high. In applications like structural health

monitoring, sampling cycle is determined by data collection time, since sampling is quick,

and collection takes most of time. And we like to minimize resource usage, because wireless

sensor nodes are limited in computational power, memory space and energy

Here we introduce reliable data collection service having those properties: Straw (Scalable

Thin and Rapid Amassment Without loss). Straw works on multi-hop routing layer provid-

ing good scalability. Complexity is drawn to a receiver (PC), and a sender (wireless node)

is kept simple and light-weight. A round trip time and an interval between packets are

optimized according to the sender node’s depth in a routing tree, so high packet through-

put is achieved without overwhelming the network blindly. Subsection 3.3.1 describes the

high level protocol, Subsection 3.3.2 shows detailed implementation for optimization, and

Subsection 3.3.3 will evaluate the performance and the efficiency of Straw.
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3.3.1 Protocol

At the high level view, the sender sends the entire bundle once, and the receiver

asks for retransmission of missing bundle fragments.

Let us define terms first. A bundle is a unit of transfer, so Straw sends one bundle at a

time reliably. A bundle is divided into bundle fragments. In Straw, one bundle fragment is

one packet.

Straw uses end-to-end communication, so the receiver is always the PC. The sender is simple,

and most of complexity is in the receiver, which has much more resources (computational

power, memory space). The receiver initiates transfer and keeps states.

Sender

The sender responds to requests with simple sequences of operations. Figure 3.11

shows state diagram of the sender. The sender accepts three commands. First command

is network information query. The sender replies with parent, depth, etc. The receiver

optimizes parameters with them. Second command is transfer request. The sender sends

the entire bundle once. Third command is random read. A request comes with a list of

missing bundle fragment sequence numbers. Then, the sender reads those data with random
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Figure 3.12: State Diagram of Receiver

access, and sends reply for each missing sequence number.

Receiver

The receiver is more complicated, as its state diagram shows in Figure 3.12. The

receiver first asks for network information to adjust the round trip time and the interval

between packets. Then the receiver requests data transfer. The entire bundle is transferred

once. Then the receiver searches for missing bundle fragments, packs sequence numbers of

them into one packet, sends it, and receives missing bundle fragments. This is one round.

At the end of each round, the receiver finds missing sequence numbers again, and sends a

request. This process continues until all missing bundle fragments are received.

The receiver has a timeout in each stage. The timeout for network information is straight

forward. For data transfer, a timer is set for the estimated time of the last packet. For a

request for missing bundle fragments, a timer is set to the last packet of that round. The
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Figure 3.13: Range of Radio Interference

timeout for one round does not lead to a failure. After predefined number of consecutive

timeouts, the receiver decides it as a failure.

3.3.2 Implementation

Straw is implementated in TinyOS targeting Mica2 mote. Many optimizations are

put into implementation. Detailed discussion of them follows here.

Parameter Optimization with Network Information and Pipelining

The round trip time and the interval between packets are determined by the depth

of the sender in the routing tree. The interval is

(Time through UART ) + depth× (Time through Radio)

Interference is assumed up to 2 hops. So as shown in Figure 3.13, when two senders are

3 hops away, it is assumed that both senders can transmit without much interference. So

when the depth of sender is equal to or greater than 3, interval is

3× (Time through Radio)
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to enable pipelining.

The depth in a routing tree can change over time. The sender continuously monitors its

depth, and changes parameters dynamically.

The round trip time is

{(Time through UART ) + depth× (Time through Radio)} × 2

In the implementation, 50% safety factor is added for times with possible uncertainty.

Collision Avoidance between Reply and Re-broadcast

There is a modification to reduce collisions. When a node at depth n receives

command, it is re-broadcasted to nodes at depth n+1. Then nodes at depth n+1 will

rebroadcast, and so on. Considering the assumption that nodes at 2 hops away will in-

terfere, the reply from node at depth n needs to wait until nodes at depth n+2 finishes

re-broadcasting. Therefore, a node needs to wait

3× (Time through Radio)

before sending reply. This factor is considered in waiting before sending reply and in

estimating the round trip time.

Requesting Multiple Missing Bundle Fragments

The receiver asks for multiple missing bundle fragments in a single packet to reduce

the overhead of NACK.

Rotating Buffers

Multiple buffers are used so that network transfer and memory read (either RAM

or FLAHS, or something else with proper addressing) can overlap. And by having multiple

buffers, the sending queue always has something to send. The number of buffers effectively

determines maximum occupancy of Straw in the sending queue.
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Simple Interface

Straw has very simple interface. Users need to call JAVA code at PC

int read(int dest, long start, long size, byte[] bffr)

and implement TinyOS code at nodes

event result t read(uint32 t start, uint32 t size, uint8 t ∗ bffr)

This gives an illusion of virtual tunneling.

Simplicity has tradeoffs. Efficiency in resource usage and generality decreases. However,

many potential users are likely to be application developers who may not want to be en-

tangled with buffer management for some more efficiency. Therefore, simple interface is

selected in favor of an easy use.

Additional Features

For debugging, or reading data directly through UART like using a testbed, Straw

supports the usage of UART instead of multi-hop routing.

Straw is flexible in bundle size from 1 byte to 1,310,710 bytes.

A manual, example codes can be found on website [2].

3.3.3 Evaluation

For evaluation, Broadcast [3] is used for a dissemination of command, and Route

[4] is used as a routing layer. Figure 3.14 shows test data on Mica2 (433MHz radio) testbed

in Soda Hall. 16 nodes are used in the test. The packet size was default 36 bytes. In this

test, bandwidth was up to 576B/s for 1 hop case and up to 304B/s for 2 hop case.

To find out how much bandwidth is used out of the theoretical limit, a single hop case

is studied further. Figure 3.15 shows how the maximum bandwidth is measured. As we

decrease the interval between packets, success rate decreases also. By dividing success rate
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Figure 3.14: Test result on Mica2 testbed
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maximum bandwidth

by the packet interval, effective bandwidth is obtained. Varying the packet interval, the

maximum bandwidth is measured.

Bandwidth

Table 3.1 shows the bandwidth for UART, radio, 1 hop (radio and UART). The

usable capacity is slightly over 60% of the hardware channel capacity. The theoretical

capacity does not consider a preamble for MAC. Event handling overhead, MAC access

Channel Capacity Usable Capacity

UART 200.0pkts/s 120.4pkts/s

Radio 66.7pkts/s 42pkts/s

1 hop 50.0pkts/s 29.4pkts/s

Table 3.1: Maximum Channel Capacity and Measured Usable Capacity
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Figure 3.16: Payload and Packet Throughput

overhead, and preamble are some of reasons for 40% loss. Straw provides 29.4pkts/s which

is 94.8% of the routing layers packet throughput.

Figure 3.16 shows loss in payload due to headers, and loss in packet throughput. We

can see 44.4% of payload is used for headers. Packet throughput is shown as a pie again

in Figure 3.17 for better analysis. 58.8% is usable out of the channel capacity. Figure 3.18

shows combined effect of those two on the bandwidth. Only 32.7% is usable above Straw.

To track where time is spent, Figure 3.19 shows packet time. The radio overhead (preamble,

MAC) adds significant amount of overhead. And headers add much more burden. The

overhead by protocols on upper layers are relatively small. Here we can find an opportunity

for increasing the bandwidth. Even though we can’t decrease the header size, we can

increase the packet size so that relative header overhead decreases. And even if the packet

size increases, the radio overhead will remain the same, and relative overhead of radio

decreases.
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Figure 3.18: Effective Bandwidth. 33% is usable
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Figure 3.19: Graph showing where time is spent. Total time is 212.7µs

Larger Packet

A larger packet is tested. 36 byte packet is doubled to 72 bytes. The payload

increases from 20B to 56B. Since the size of header is fixed, the payload increases by 2.8

times rather than 2 times. The packet throughput decreased from 29.4pkts/s to 20.9pkts/s.

The radio overhead and the protocol overhead don’t change much, so the packet throughput

goes down only to 71%, not to 50%. 71% is slightly worse than the theoretical calculation

75%, which is obtained by doubling UART channel and Radio channel time in Figure 3.19

(additional overhead at radio and protocol will explain 4% decrease). This combination

increases the bandwidth by 1.99 times (from 588B/s to 1172B/s).

When a loss rate is high, a larger packet means a higher loss rate. 1.99 is optimistic in a

sense that the test environment has a high success rate (99.8%). However, since the payload

is so small compared to a header with 36 byte packet, in many cases the benefit of a larger

packet size would exceed the disadvantage by an increased loss rate.
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3.3.4 Findings

Straw provides reliability, and achieves 94.8% packet throughput and 86.2% chan-

nel utilization on top of a routing layer in our controlled indoor testbed. And doubling

packet size yields twice larger effective bandwidth, due to the small packet size.

Custody Transfer

Custody transfer is sending responsibility with data to the next hop. Therefore,

the node at the next hop will make sure data get transfered reliably to the destination.

When a larger packet is used, the importance of loss rate rises. With a larger packet,

benefit of custody transfer becomes more apparent. Rather than going all the way between

the sender and the receiver, local fix will be very efficient.

RAM Space

A larger packet is attractive for increasing the bandwidth. However, it also brings

a new problem other than the effect of loss rate. 1 byte increase in packet size resulted

in 33 bytes increase in RAM space with the test code, which means 33 packet buffers are

used. When the packet size is double to 72 bytes, even basic services (time synchronization,

broadcast, multi-hop routing, and reliable data collection) and a moderate application can

use more than 4KB of RAM in mica2. Even the test program exceeded 4KB limit, so packet

buffer size of routing layer had to be reduced from 16 to 12.

Figure 3.20 shows where packet buffers are used. First usage is as a buffer at end com-

ponents. In TinyOS, packet space is provided by end components, so even when some

component rarely sends packet, it still has to reserve packet space. Second usage is as a

forward queue. There exists a mismatch between the incoming speed and the outgoing

speed. Not to drop packets, a forwarding queue is needed. And the queue is managed by

components requiring forwarding. And the size of buffer is related to the reliability: to pro-

vide higher reliability, the buffer size needs be larger. So to increase the reliability overall,
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Figure 3.20: Usage of Packet Buffer

the size of forward queue needs be increased in each component with a forward queue.

Debate on Packet Buffer Pool

There is an alternative possibility for a packet buffer. Actual buffer space is

provided by the lower layer at sending queue, and the upper layer keeps pointers only.

Then the size of the sending queue determines reliability of every forwarding queue. A

downside is that even though this solution is great in theory, the dynamic allocation of

memory space very often leads to a disaster as we have seen in history (evolution from

C++ to JAVA): it was the major source of bugs. Is controlled and limited sharing of packet

buffer pool allowable or should it remain forbidden?
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3.4 Structure Monitoring Toolkit

Structure Monitoring Toolkit (SMT) is a general toolkit for structure monitoring

and machine monitoring. Here are highlights of SMT.

• Modularization: It is highly modularized, so subcomponents can be reused. As in

Figure 3.1, command interpreter, sample & log, and read & send are independent

components on TinyOS side. JAVA side has command interpreter and operation

processor, each of which can be reused easily.

• Multi-layer command: There are two layers of command: operation, micro-operation.

Operation is a composition of micro-operations. Command-line operation is decom-

posed into micro-operations which motes understands. So it is easy to add or modify

operations without changing program on mote side.

• Stateless mote: Since a mote executes simple micro-operations, a mote is almost

stateless, so it is robust.

• Meta-data management: Meta data describing data is stored separately. So de-

scription and interpretation of data is clean and easy to modify.

• Integrity: Mote keeps integrity state at reset, erase and writing data. This guarantees

partial imperfect data isn’t read accidentally.

• Useful tools: There are many useful tools for collecting information about time

synchronization, network, and sampling jitter.

Command list is in Appendix B.



47

Chapter 4

Data Analysis

4.1 Signal Processing

As an analog signal processing low-pass filter is used, which filters high frequency

noise. However as shown in Figure 4.1, a low-pass filter is not perfect, and there exists

some leftover signal above threshold frequency. Therefore even if a low-pass filter is used,

sampling frequency at ADC should be higher than threshold frequency of low-pass filter.

Moreover by the Nyquist theorem, to avoid aliasing, sampling rate should be at least twice

of signals frequency. For accelerometer board, low-pass filter with threshold frequency 25Hz

is used. Then ADC should sample at frequency much higher than 50Hz.

As a digital signal processing, signals are oversampled and averaged. If noise follows Gaus-

sian distribution, by averaging N numbers, noise decreases by a factor of
√

N . This multi-

plies sampling frequency by a factor of N . We used N = 5 for a footbridge deployment.

4.2 System Identification

System identification is identifying the model of target system. By matching input

to system and output from system, we can construct a mathematical system model. The

usual process is fitting a general Box-Jenkins multi-input multi-output model to sampled
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Figure 4.1: Imperfect Low-pass Filter

data. And natural frequencies, damping ratios and mode shape are then estimated using

the estimated Box-Jenkins model. We will not cover the system identification further. More

detail on the system identification can be found in [20].

A change in modal properties is a result of a change in structural stiffness (assuming that

the masses do not change significantly). Deterministic and probabilistic methods have been

developed to detect these changes and translate them to a structural damage (by using

substructures for example).
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Chapter 5

Results from Footbridge

Deployment

The final target of the project is the Golden Gate Bridge. Before going there, we

used a footbridge as a testbed. We tested radio and network in a bridge environment. And

we actually measured the vibration of the bridge, and analyzed the collected data.

The Footbridge from City of Berkeley to Berkeley Marina spans over I-80. It is 260ft long

and 16ft wide suspension bridge hang by steel arch as seen in Figure 5.1.

5.1 First Deployment

At the first deployment, two nodes are deployed. Figure 5.2 depicts the location

of the nodes: one at mid-span, the other at quarter-span. Both nodes are close to the base

station that they can directly communicate with the base station. Eigen Realization

Algorithm was used to estimate the modal properties of the bridge (frequencies, damping

ratios and mode shapes at those two locations). Figure 5.3 shows the first vertical mode

of vibration. And Figure 5.4 shows the second vertical mode of vibration. Figure 5.5 and

Figure 5.6 shows horizontal mode of vibration, first mode and second mode, respectively.
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Figure 5.1: Footbridge Over I-80

Berkeley SF Bay

mid-spanquarter-span

12

Base Station

260ft

16ft

Figure 5.2: Location of Nodes at the First Deployment
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Figure 5.3: First Vertical Mode
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Figure 5.4: Second Vertical Mode
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Figure 5.5: First Horizontal Mode
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Figure 5.6: Second Horizontal Mode
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1st mode 2nd mode 3rd mode 4th mode

Vertical
Frequency (Hz) 1.35 1.79 11.47 13.75

Damping Ratio 0.055 0.02 0.043 0.08

Horizontal
Frequency (Hz) 2.37 7.87 11.91 14.59

Damping Ratio 0.26 0.16 0.123 0.092

Table 5.1: Maximum Channel Capacity and Measured Usable Capacity

Table 5.1 shows a summary of the vibrations. This can be thought as a part of a signature

of the bridge. When the bridge suffered structure change, numbers in this table can change.

However, by how much these numbers are affected by the change of the structure, and how

much change in these numbers indicates hazards of the structure, and how many modes

needs be looked at, remain as a future work.

5.2 Second Deployment

We went to bridge for the second deployment with improved hardware and soft-

ware. We had the following objectives.

• Achieve higher spatial resolution to get a denser look at the vibration

• Measure torsion

• Evaluate the sensitivity of different algorithms to measurement/hardware noise

• Evaluate problems arising from deployment of a larger network

Figure 5.7 shows the location of motes. 13 motes are deployed. 10 of them were used

to measure vibration of the bridge, 3 of them were used to see calibration accuracy and

variation of boards. The deployment was successful. Multi-hop network was formed, and

reliable communication worked. And all nodes sampled data synchronously. Figure 5.8,
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Figure 5.7: Location of Nodes at the Second Deployment
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Figure 5.8: First Vertical Mode at the Second Deployment
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Figure 5.9: Second Vertical Mode at the Second Deployment

5.9 show the first and second vertical mode of vibration. The result coincides with that of

the first deployment. Another interesting point is that vertical vibration is stronger than

horizontal vibration. The reason can be found at the structure of the bridge as shown in

Figure 5.10. Under the span, beams are supporting span. This gives rigidity to horizontal

direction. Therefore, horizontal vibration is weak.
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Figure 5.10: Beams Supporting Span



57

Chapter 6

Related Work

Habitat monitoring is a leading application of wireless sensor network. And it is an

example application with low duty cycle. ZebraNet[18] uses PDA-level device with 802.11b

wireless network. Great Duck Island[26] uses Berkeley mote, and watch petrels without

disturbing them at low cost.

For structure monitoring, there are researches using conventional wired sensors. GPS was

used combined with wired data collection[23, 14], however at a high cost.

There are approaches using WSN for SHM [13, 24, 19, 15]. MEMS accelerometers are used

to sample vibration. RF radio is used for the wireless communication. And microcontroller

drives sensors and radios. However, they all use custom radio, and can not scale to mul-

tiple nodes over multi-hop network. [17] uses Mica2 and TinyOS. It supports multi-hop

network, however there is no provision for the time synchronization, which is necessary for

time-related sampling of the entire structure.

[21, 28] has time synchronization and reliable multi-hop communication. However,

there is no study about the required fidelity of data. Data should meet requirements and

challenges in Chapter 1 for SHM.

On hardware side, accuracy of hardware is not good enough to capture 500µG signal. Study
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for calibration is absent. To capture the required signal, a new board would be needed, and

whole body of calibration should be studied.

On software side, there is no study on sampling jitter. Time synchronization accuracy and

reliability of communication are not good enough to capture meaningful signal from the

structure. When higher quality of data is needed, significant amount of software needs be

improved and analyzed.

So even though these works are good examples showing the possibility of using WSN in

SHM, produced data is not of adequate quality to be used for meaningful analysis.
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Chapter 7

Conclusion

Lessons from this project will be presented first; contributions and conclusions will

follow.

The accuracy of the accelerometer, installation tilt error, effect of temperature variation,

sampling jitter, and reliability of data collection, all limit the fidelity of data. And the worst

parts of them determines the quality of data. Even if the accelerometer is very accurate,

the quality of sample will depend on the accuracy of calibration, if temperature calibration

is poor. As we increase the requirements for sample quality, more parts fall below the

threshold, and more work is needed to make them satisfy the required level. So when a

new application is considered, the requirement for data quality needs be investigated for

estimating the required accuracy and complexity of the system.

Another difficulty was that some problems do not fall within computer science or

civil engineering. For example, antenna and packaging are critical problems. But antenna

belongs to a field of communication, so we needed to get help from experts in that field.

Packaging was in the same situation: mechanical engineering. And real implementation

and deployment required some engineering effort: soldering wires and drilling holes.

One subtle issue came from the nature of interdisciplinary project. Even though it

is not always true, people in computer science tend to like to deploy and iterate, while people
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in civil engineering prefer thoroughly perfecting system first. In computer science, except in

the case of mission-critical software like one in space shuttle, we can quickly debug problems

found. In many cases, it is more reasonable and economical to deploy before catching every

single bug, which would be impossible for a large system. So the mindset is inclined to

deploying, testing, debugging, and iterating. In contrast, in civil engineering, we can not

debug and patch collapsed bridge and lost lives. Therefore, it is very compelling to make

sure the system does not have any problem before deployment.

However, we could appreciate the approach of each side. Quick deployment and iteration

can discover that some problems are not as critical as we assume, or more serious than

we think. Careful design and test can prevent costly change at later stage. The questions

would become what is good tradeoff.

This study makes three main contributions to wireless sensor networks.

• First contribution is research on high frequency sampling. Supporting components

for high frequency sampling are used and tested. Limitation of system is examined.

Condition-based machine monitoring [7], and sound detection [25] are examples of

applications requiring high frequency sampling. They will benefit from this study.

• Second one is reliable data collection component. Reliable Data Collection (Straw)

is scalable, light-weight on mote, reliable, and achieves very high packet throughput

and channel utilization. It is an independent separate component, which is easy to

plug in. There exist huge categories of applications (including two examples above:

condition-based machine monitoring and sound detection) which need every data.

• Third one is integration of diverse services, and driving them to an extreme. Multi-hop

routing, reliable dissemination, reliable data collection, time synchronization, and high

frequency sampling, are all integrated in a single application. And they are operated

to an extreme degree, putting them under significant stress. This found that current

network abstraction requires many duplicate packet buffers consuming large amount
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of RAM space. And we found bugs which showed up only under extreme network

stress.

Deployment on the footbridge showed the system captures signal successfully, and

we successfully analyzed the bridge with collected data.

Through this work, WSN supports the opposite extreme of its usual application

so far: sampling high fidelity data at high frequency, and collecting large amount of data

reliably.
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Appendix A

Schematics of Accelerometer Board
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Appendix B

Structure Monitoring Toolkit

(SMT) Commands

Usage: java net.tinyos.SMT.DataCenter <command> <arguments> [options] where

<command> <arguments> [options] can be one of the following:

ledOn [-dest dest] [-verbose]

ledOff [-dest dest] [-verbose]

pingNode <dest> [-toUART] [-verbose]

nodeList [-toUART] [-verbose]

eraseFlash [-dest dest] [-verbose]

startSensing <nSamples> <intrv> [-dest dest] [-chnlSelect chnlSelect]

[-samplesToAvg samplesToAvg] [-nm nm] [-verbose]

eraseStart <nSamples> <intrv> [-dest dest] [-chnlSelect chnlSelect]

[-samplesToAvg samplesToAvg] [-nm nm] [-verbose]

readProfile [-dest dest] [-toUART] [-verbose]

readData [-dest dest] [-toUART] [-verbose]

randomRead <dest> <chnlNo> <sampleNo> [-toUART] [-verbose]
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timesyncInfo <dest> [-toUART] [-verbose]

networkInfo <dest> [-toUART] [-verbose]

forDebug [-dest dest] [-toUART] [-verbose]

resetBcSeqNo [-verbose]

reset [-dest dest] [-verbose]

help [-verbose]


