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1 Introduction
Structural Health Monitoring (SHM) is estimating the

state of structural health, or detecting the changes in struc-
ture that effect its performance. Two major factors are the
time-scale of change and the severity of change. Time-scale
is how quickly the change occurs, and severity is the de-
gree of change. Two major categories of SHM are disas-
ter response [5] (earthquake, explosion, etc.) and continu-
ous health monitoring (ambient vibrations, wind, etc.). This
work is focused on continuous health monitoring. There are
two SHM approaches: direct damage detection (visual in-
spection, x-ray, etc.) and indirect damage detection (change
in structural properties/behavior). We use indirect detection,
especially through vibration.
SHM itself is not a new concept [2]. The conventional
method uses PCs wired to piezoelectric accelerometers.
Compared to the conventional method, Wireless Sensor Net-
works (WSN) provides the same functionality at a much
lower price which permits much denser monitoring. In
WSN, wiring is not needed, so installation and maintenance
are easy and inexpensive. Moreover, WSN affect the op-
eration of the structure less. However, some requirements
of structural health monitoring become challenges in WSN:
(1) high fidelity data, (2) high frequency sampling with low
jitter, (3) time synchronized sampling, (4) large-scale multi-
hop network, (5) reliable command dissemination, and (6)
reliable data collection. In this work, (3), (4), and (5) are
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Figure 1. Accelerometer Board

Table 1. Two Accelerometers
ADXL 202E Silicon Designs 1221L

Type MEMS MEMS
Range of System -2G to 2G -0.1G to 0.1G

System noise floor 200(µG/
√

Hz) 30(µG/
√

Hz)
Price $10 $150

solved by existing works: FTSP, MintRoute, and Drip re-
spectively. And this work proposed solutions to (1), (2), and
(6). However, they will not be covered in this poster in detail.

2 Accelerometer Board
A new accelerometer board is designed for structural

health monitoring. It has very accurate accelerometers and
a thermometer to calibrate them. It is shown in Figure 1.
Even though this work focuses on the ambient vibration, the
board itself is designed to monitor two quite different sources
of vibrations (earthquake and ambient). Therefore the ac-
celerometer board has two kinds of accelerometers: ADXL
202E to capture big movements like an earthquake and Sili-
con Designs 1221L to sample subtle signals like an ambient
vibration. Table 1 shows characteristics of each accelerome-
ter part (range and system noise floor shows the performance
in combination with the entire system). Both accelerometers
capture two orthogonal axis of acceleration. 16 bit analog to
digital converters (ADC) are used for each channel, and the
vertical channel of the Silicon Designs 1221L has a 1G offset
to compensate for the gravity. And the accelerometer board
has low-pass filters at 25Hz. A MicaZ mote stores data from
the accelerometer board, and later sends the data.
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Figure 2. Deployment at a Footbridge

3 Software Architecture
As an underlying software infrastructure, TinyOS is used.

On top of the best-effort one-hop communication, Broadcast
is used for the command dissemination, and MintRoute [4]
is used for the information reply. MintRoute provides a best-
effort multi-hop convergence routing. Reliable data collec-
tion layer (Flush) lies above Broadcast and MintRoute. For
time synchronization, FTSP [1] is used. BufferedLog is used
to support high frequency sampling with a light-weight log-
ging. To minimize sampling jitter, when sampling starts,
only sampling components and logging components remain
active; all other components like the radio are turned off.
Structural hEalth moNiToRing toolkIt (Sentri) is an appli-
cation layer program, which drives all components. To re-
duce the noise of the vibration measurements, the digital sig-
nal processing techniques of oversampling and averaging are
used.

4 Deployment Experience
We deployed on the Berkeley pedestrian footbridge. On

the bridge, we tested our radios and network in a real world
physical environment. We measured the actual vibration of
the bridge, and analyzed the collected data. The Footbridge
is a 260ft long and 16ft wide suspension bridge hung by two
steel arches as seen in Figure 2(a). Data is sampled at 1KHz
for 4 minutes. Every 5 samples are averaged together into
one measurement, making the effective logging rate 200Hz.
Figure 2(b) shows the location of motes. 13 motes are de-
ployed. 10 of them were used to measure the vibration of the
bridge, 3 of them were used to see calibration accuracy and
the variation of boards. The deployment was successful. The
multi-hop network formed, commands are disseminated cor-
rectly, and the reliable data collection layer delivered high
frequency sampling data as expected. All nodes sampled
data synchronously. Figure 4 shows the first vertical mode of
the vibration. The modal properties of the bridge estimated
using an ARX model with our collected data is consistent
with the structural properties [3] of an arch structure.

5 Status and Future Work
We are now deploying nodes on the Golden Gate Bridge.

The bridge can be divided into a mid-span, two side-spans,
and two towers (south, north). We already deployed 51 nodes
covering one side of the mid-span, and 8 nodes covering both
sides of south tower’s 4 struts, as shown in Figure 4. We are
collecting data, and analyzing the data.
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Figure 4. Deployment at the Golden Gate Bridge and
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